No Arabic abstract
Background: The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this Infodemic requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. Objective: We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. Methods: We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. Results: A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot Satya increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. Conclusion: We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation.
The ongoing COVID-19 global pandemic is affecting every facet of human lives (e.g., public health, education, economy, transportation, and the environment). This novel pandemic and citywide implemented lockdown measures are affecting virus transmission, peoples travel patterns, and air quality. Many studies have been conducted to predict the COVID-19 diffusion, assess the impacts of the pandemic on human mobility and air quality, and assess the impacts of lockdown measures on viral spread with a range of Machine Learning (ML) techniques. This review study aims to analyze results from past research to understand the interactions among the COVID-19 pandemic, lockdown measures, human mobility, and air quality. The critical review of prior studies indicates that urban form, peoples socioeconomic and physical conditions, social cohesion, and social distancing measures significantly affect human mobility and COVID-19 transmission. during the COVID-19 pandemic, many people are inclined to use private transportation for necessary travel purposes to mitigate coronavirus-related health problems. This review study also noticed that COVID-19 related lockdown measures significantly improve air quality by reducing the concentration of air pollutants, which in turn improves the COVID-19 situation by reducing respiratory-related sickness and deaths of people. It is argued that ML is a powerful, effective, and robust analytic paradigm to handle complex and wicked problems such as a global pandemic. This study also discusses policy implications, which will be helpful for policymakers to take prompt actions to moderate the severity of the pandemic and improve urban environments by adopting data-driven analytic methods.
The objective of the study is to examine coronavirus disease (COVID-19) related discussions, concerns, and sentiments that emerged from tweets posted by Twitter users. We analyze 4 million Twitter messages related to the COVID-19 pandemic using a list of 25 hashtags such as coronavirus, COVID-19, quarantine from March 1 to April 21 in 2020. We use a machine learning approach, Latent Dirichlet Allocation (LDA), to identify popular unigram, bigrams, salient topics and themes, and sentiments in the collected Tweets. Popular unigrams include virus, lockdown, and quarantine. Popular bigrams include COVID-19, stay home, corona virus, social distancing, and new cases. We identify 13 discussion topics and categorize them into five different themes, such as public health measures to slow the spread of COVID-19, social stigma associated with COVID-19, coronavirus news cases and deaths, COVID-19 in the United States, and coronavirus cases in the rest of the world. Across all identified topics, the dominant sentiments for the spread of coronavirus are anticipation that measures that can be taken, followed by a mixed feeling of trust, anger, and fear for different topics. The public reveals a significant feeling of fear when they discuss the coronavirus new cases and deaths than other topics. The study shows that Twitter data and machine learning approaches can be leveraged for infodemiology study by studying the evolving public discussions and sentiments during the COVID-19. Real-time monitoring and assessment of the Twitter discussion and concerns can be promising for public health emergency responses and planning. Already emerged pandemic fear, stigma, and mental health concerns may continue to influence public trust when there occurs a second wave of COVID-19 or a new surge of the imminent pandemic.
In this work we looked into a dataset of 114 thousands of suspicious messages collected from the most popular closed messaging platform in Taiwan between January and July, 2020. We proposed an hybrid algorithm that could efficiently cluster a large number of text messages according their topics and narratives. That is, we obtained groups of messages that are within a limited content alterations within each other. By employing the algorithm to the dataset, we were able to look at the content alterations and the temporal dynamics of each particular rumor over time. With qualitative case studies of three COVID-19 related rumors, we have found that key authoritative figures were often misquoted in false information. It was an effective measure to increase the popularity of one false information. In addition, fact-check was not effective in stopping misinformation from getting attention. In fact, the popularity of one false information was often more influenced by major societal events and effective content alterations.
The COVID-19 pandemic has transformed mobile health applications and telemedicine from nice to have tools into essential healthcare infrastructure. This need is particularly great for the elderly who, due to their greater risk for infection, may avoid medical facilities or be required to self-isolate. These are also the very groups at highest risk for cognitive decline. For example, during the COVID-19 pandemic artificially intelligent conversational agents were employed by hospitals and government agencies (such as the CDC) to field queries from patients about symptoms and treatments. Digital health tools also proved invaluable to provide neuropsychiatric and psychological self-help to people isolated at home or in retirement centers and nursing homes.
COVID-19 has resulted in a worldwide pandemic, leading to lockdown policies and social distancing. The pandemic has profoundly changed the world. Traditional methods for observing these historical events are difficult because sending reporters to areas with many infected people can put the reporters lives in danger. New technologies are needed for safely observing responses to these policies. This paper reports using thousands of network cameras deployed worldwide for the purpose of witnessing activities in response to the policies. The network cameras can continuously provide real-time visual data (image and video) without human efforts. Thus, network cameras can be utilized to observe activities without risking the lives of reporters. This paper describes a project that uses network cameras to observe responses to governments policies during the COVID-19 pandemic (March to April in 2020). The project discovers over 30,000 network cameras deployed in 110 countries. A set of computer tools are created to collect visual data from network cameras continuously during the pandemic. This paper describes the methods to discover network cameras on the Internet, the methods to collect and manage data, and preliminary results of data analysis. This project can be the foundation for observing the possible second wave in fall 2020. The data may be used for post-pandemic analysis by sociologists, public health experts, and meteorologists.