Do you want to publish a course? Click here

Corona Health -- A Study- and Sensor-based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic

77   0   0.0 ( 0 )
 Added by Felix Beierle
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.



rate research

Read More

Without proper medication and vaccination for the COVID-19, many governments are using automated digital healthcare surveillance system to prevent and control the spread. There is not enough literature explaining the concerns and privacy issues; hence, we have briefly explained the topics in this paper. We focused on digital healthcare surveillance systems privacy concerns and different segments. Further research studies should be conducted in different sectors. This paper provides an overview based on the published articles, which are not focusing on the privacy issues that much. Artificial intelligence and 5G networks combine the advanced digital healthcare surveillance system; whereas Bluetooth-based contact tracing systems have fewer privacy concerns. More studies are required to find the appropriate digital healthcare surveillance system, which would be ideal for monitoring, controlling, and predicting the COVID-19 trajectory.
Most work to date on mitigating the COVID-19 pandemic is focused urgently on biomedicine and epidemiology. Yet, pandemic-related policy decisions cannot be made on health information alone. Decisions need to consider the broader impacts on people and their needs. Quantifying human needs across the population is challenging as it requires high geo-temporal granularity, high coverage across the population, and appropriate adjustment for seasonal and other external effects. Here, we propose a computational methodology, building on Maslows hierarchy of needs, that can capture a holistic view of relative changes in needs following the pandemic through a difference-in-differences approach that corrects for seasonality and volume variations. We apply this approach to characterize changes in human needs across physiological, socioeconomic, and psychological realms in the US, based on more than 35 billion search interactions spanning over 36,000 ZIP codes over a period of 14 months. The analyses reveal that the expression of basic human needs has increased exponentially while higher-level aspirations declined during the pandemic in comparison to the pre-pandemic period. In exploring the timing and variations in statewide policies, we find that the durations of shelter-in-place mandates have influenced social and emotional needs significantly. We demonstrate that potential barriers to addressing critical needs, such as support for unemployment and domestic violence, can be identified through web search interactions. Our approach and results suggest that population-scale monitoring of shifts in human needs can inform policies and recovery efforts for current and anticipated needs.
68 - Andrea W Wang 2021
In this work we looked into a dataset of 114 thousands of suspicious messages collected from the most popular closed messaging platform in Taiwan between January and July, 2020. We proposed an hybrid algorithm that could efficiently cluster a large number of text messages according their topics and narratives. That is, we obtained groups of messages that are within a limited content alterations within each other. By employing the algorithm to the dataset, we were able to look at the content alterations and the temporal dynamics of each particular rumor over time. With qualitative case studies of three COVID-19 related rumors, we have found that key authoritative figures were often misquoted in false information. It was an effective measure to increase the popularity of one false information. In addition, fact-check was not effective in stopping misinformation from getting attention. In fact, the popularity of one false information was often more influenced by major societal events and effective content alterations.
Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there is a significant amount of diverse user-generated social media content. However, COVID-19 pandemic has changed the way we live, study, socialize and recreate and this has affected our well-being and mental health problems. There are growing researches that leverage online social media analysis to detect and assess users mental status. In this paper, we survey the literature of social media analysis for mental disorders detection, with a special focus on the studies conducted in the context of COVID-19 during 2020-2021. Firstly, we classify the surveyed studies in terms of feature extraction types, varying from language usage patterns to aesthetic preferences and online behaviors. Secondly, we explore detection methods used for mental disorders detection including machine learning and deep learning detection methods. Finally, we discuss the challenges of mental disorder detection using social media data, including the privacy and ethical concerns, as well as the technical challenges of scaling and deploying such systems at large scales, and discuss the learnt lessons over the last few years.
The COVID-19 pandemic has transformed mobile health applications and telemedicine from nice to have tools into essential healthcare infrastructure. This need is particularly great for the elderly who, due to their greater risk for infection, may avoid medical facilities or be required to self-isolate. These are also the very groups at highest risk for cognitive decline. For example, during the COVID-19 pandemic artificially intelligent conversational agents were employed by hospitals and government agencies (such as the CDC) to field queries from patients about symptoms and treatments. Digital health tools also proved invaluable to provide neuropsychiatric and psychological self-help to people isolated at home or in retirement centers and nursing homes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا