Do you want to publish a course? Click here

On the exponent of convergence of Engel series

60   0   0.0 ( 0 )
 Added by Lei Shang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For $xin (0,1)$, let $langle d_1(x),d_2(x),d_3(x),cdots rangle$ be the Engel series expansion of $x$. Denote by $lambda(x)$ the exponent of convergence of the sequence ${d_n(x)}$, namely begin{equation*} lambda(x)= infleft{s geq 0: sum_{n geq 1} d^{-s}_n(x)<inftyright}. end{equation*} It follows from ErdH{o}s, R{e}nyi and Sz{u}sz (1958) that $lambda(x) =0$ for Lebesgue almost all $xin (0,1)$. This paper is concerned with the topological and fractal properties of the level set ${xin (0,1): lambda(x) =alpha}$ for $alpha in [0,infty]$. For the topological properties, it is proved that each level set is uncountable and dense in $(0,1)$. Furthermore, the level set is of the first Baire category for $alphain [0,infty)$ but residual for $alpha =infty$. For the fractal properties, we prove that the Hausdorff dimension of the level set is as follows: [ dim_{rm H} big{x in (0,1): lambda(x) =alphabig}=dim_{rm H} big{x in (0,1): lambda(x) geqalphabig}= left{ begin{array}{ll} 1-alpha, & hbox{$0leq alphaleq1$;} 0, & hbox{$1<alpha leq infty$.} end{array} right. ]



rate research

Read More

Let $G$ be a group and let $xin G$ be a left $3$-Engel element of order dividing $60$. Suppose furthermore that $langle xrangle^{G}$ has no elements of order $8$, $9$ and $25$. We show that $x$ is then contained in the locally nilpotent radical of $G$. In particular all the left $3$-Engel elements of a group of exponent $60$ are contained in the locally nilpotent radical.
Let $Gamma$ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane $mathbb H$, and let $M = Gamma backslash mathbb H$ be the associated finite volume hyperbolic Riemann surface. If $gamma$ is parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part of mathematical literature. If $gamma$ is hyperbolic, then, following ideas due to Kudla-Millson, there is a corresponding hyperbolic Eisenstein series. In this article, we study the limiting behavior of parabolic and hyperbolic Eisenstein series on a degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. If $gamma in Gamma$ corresponds to a degenerating hyperbolic element, then a multiple of the associated hyperbolic Eisenstein series converges to parabolic Eisenstein series on the limit surface.
For a discrete memoryless channel with finite input and output alphabets, we prove convergence of a parametric family of iterative computations of the optimal correct-decoding exponent. The exponent, as a function of communication rate, is computed for a fixed rate and for a fixed slope.
We investigate arithmetic properties of values of the entire function $$ F(z)=F_q(z;lambda)=sum_{n=0}^inftyfrac{z^n}{prod_{j=1}^n(q^j-lambda)}, qquad |q|>1, quad lambda otin q^{mathbb Z_{>0}}, $$ that includes as special cases the Tschakaloff function ($lambda=0$) and the $q$-exponential function ($lambda=1$). In particular, we prove the non-quadraticity of the numbers $F_q(alpha;lambda)$ for integral $q$, rational $lambda$ and $alpha otin-lambda q^{mathbb Z_{>0}}$, $alpha e0$.
We attach buildings to modular lattices and use them to develop a metric approach to Harder-Narasimhan filtrations. Switching back to a categorical framework, we establish an abstract numerical criterion for the compatibility of these filtrations with tensor products. We finally verify our criterion in three cases, one of which is new.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا