No Arabic abstract
Let $G$ be a group and let $xin G$ be a left $3$-Engel element of order dividing $60$. Suppose furthermore that $langle xrangle^{G}$ has no elements of order $8$, $9$ and $25$. We show that $x$ is then contained in the locally nilpotent radical of $G$. In particular all the left $3$-Engel elements of a group of exponent $60$ are contained in the locally nilpotent radical.
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G$ for any $ain A^#$, then $gamma_{r-1}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-1$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $G$ for any $ain A^#$, then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Assuming $rgeq 3$ we prove that if all elements in $gamma_{r-2}(C_G(a))$ are $n$-Engel in $C_G(a)$ for any $ain A^#$, then $gamma_{r-2}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-2$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $C_G(a)$ for any $ain A^#,$ then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Analogue (non-quantitative) results for profinite groups are also obtained.
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an elementary abelian group of order $q^2$ acting coprimely on a finite group $G$. We show that if for each nontrivial element $a$ in $ A$ and every element $gin C_{G}(a)$ the cardinality of the smallest Engel sink $mathscr{E}(g)$ is at most $m$, then the order of $gamma_infty(G)$ is bounded in terms of $m$ only. Moreover we prove that if for each $ain Asetminus {1}$ and every element $gin C_{G}(a)$, the smallest Engel sink $mathscr{E}(g)$ generates a subgroup of rank at most $m$, then the rank of $gamma_infty(G)$ is bounded in terms of $m$ and $q$ only.
For an element $g$ of a group $G$, an Engel sink is a subset $mathcal{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathcal{E}(g)$. We conjecture that if $G$ is a profinite group in which every element admits a sink that is a procyclic subgroup, then $G$ is procyclic-by-(locally nilpotent). We prove the conjecture in two cases -- when $G$ is a finite group, or a soluble pro-$p$ group.
A regular left-order on finitely generated group $G$ is a total, left-multiplication invariant order on $G$ whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and give a classification of the groups all whose left-orders are regular left-orders. In addition, we prove that solvable Baumslag-Solitar groups $B(1,n)$ admits a regular left-order if and only if $ngeq -1$. Finally, Hermiller and Sunic showed that no free product admits a regular left-order, however we show that if $A$ and $B$ are groups with regular left-orders, then $(A*B)times mathbb{Z}$ admits a regular left-order.
We study left orderable groups by using dynamical methods. We apply these techniques to study the space of orderings of these groups. We show for instance that for the case of (non-Abelian) free groups, this space is homeomorphic to the Cantor set. We also study the case of braid groups (for which the space of orderings has isolated points but contains homeomorphic copies of the Cantor set). To do this we introduce the notion of the Conradian soul of an order as the maximal subgroup which is convex and restricted to which the original ordering satisfies the so called conradian property, and we elaborate on this notion.