Do you want to publish a course? Click here

Leaving My Fingerprints: Motivations and Challenges of Contributing to OSS for Social Good

66   0   0.0 ( 0 )
 Added by Denae Ford
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

When inspiring software developers to contribute to open source software, the act is often referenced as an opportunity to build tools to support the developer community. However, that is not the only charge that propels contributions -- growing interest in open source has also been attributed to software developers deciding to use their technical skills to benefit a common societal good. To understand how developers identify these projects, their motivations for contributing, and challenges they face, we conducted 21 semi-structured interviews with OSS for Social Good (OSS4SG) contributors. From our interview analysis, we identified themes of contribution styles that we wanted to understand at scale by deploying a survey to over 5765 OSS and Open Source Software for Social Good contributors. From our quantitative analysis of 517 responses, we find that the majority of contributors demonstrate a distinction between OSS4SG and OSS. Likewise, contributors described definitions based on what societal issue the project was to mitigate and who the outcomes of the project were going to benefit. In addition, we find that OSS4SG contributors focus less on benefiting themselves by padding their resume with new technology skills and are more interested in leaving their mark on society at statistically significant levels. We also find that OSS4SG contributors evaluate the owners of the project significantly more than OSS contributors. These findings inform implications to help contributors identify high societal impact projects, help project maintainers reduce barriers to entry, and help organizations understand why contributors are drawn to these projects to sustain active participation.



rate research

Read More

Developers are more than nerds behind computers all day, they lead a normal life, and not all take the traditional path to learn programming. However, the public still sees software development as a profession for math wizards. To learn more about this special type of knowledge worker from their first-person perspective, we conducted three studies to learn how developers describe a day in their life through vlogs on YouTube and how these vlogs were received by the broader community. We first interviewed 16 developers who vlogged to identify their motivations for creating this content and their intention behind what they chose to portray. Second, we analyzed 130 vlogs (video blogs) to understand the range of the content conveyed through videos. Third, we analyzed 1176 comments from the 130 vlogs to understand the impact the vlogs have on the audience. We found that developers were motivated to promote and build a diverse community, by sharing different aspects of life that define their identity, and by creating awareness about learning and career opportunities in computing. They used vlogs to share a variety of how software developers work and live -- showcasing often unseen experiences, including intimate moments from their personal life. From our comment analysis, we found that the vlogs were valuable to the audience to find information and seek advice. Commenters sought opportunities to connect with others over shared triumphs and trials they faced that were also shown in the vlogs. As a central theme, we found that developers use vlogs to challenge the misconceptions and stereotypes around their identity, work-life, and well-being. These social stigmas are obstacles to an inclusive and accepting community and can deter people from choosing software development as a career. We also discuss the implications of using vlogs to support developers, researchers, and beyond.
In many of the least developed and developing countries, a multitude of infants continue to suffer and die from vaccine-preventable diseases and malnutrition. Lamentably, the lack of official identification documentation makes it exceedingly difficult to track which infants have been vaccinated and which infants have received nutritional supplements. Answering these questions could prevent this infant suffering and premature death around the world. To that end, we propose Infant-Prints, an end-to-end, low-cost, infant fingerprint recognition system. Infant-Prints is comprised of our (i) custom built, compact, low-cost (85 USD), high-resolution (1,900 ppi), ergonomic fingerprint reader, and (ii) high-resolution infant fingerprint matcher. To evaluate the efficacy of Infant-Prints, we collected a longitudinal infant fingerprint database captured in 4 different sessions over a 12-month time span (December 2018 to January 2020), from 315 infants at the Saran Ashram Hospital, a charitable hospital in Dayalbagh, Agra, India. Our experimental results demonstrate, for the first time, that Infant-Prints can deliver accurate and reliable recognition (over time) of infants enrolled between the ages of 2-3 months, in time for effective delivery of vaccinations, healthcare, and nutritional supplements (TAR=95.2% @ FAR = 1.0% for infants aged 8-16 weeks at enrollment and authenticated 3 months later).
To investigate the functional and social acceptance of a humanoid robot, we carried out an experimental study with 56 adult participants and the iCub robot. Trust in the robot has been considered as a main indicator of acceptance in decision-making tasks characterized by perceptual uncertainty (e.g., evaluating the weight of two objects) and socio-cognitive uncertainty (e.g., evaluating which is the most suitable item in a specific context), and measured by the participants conformation to the iCubs answers to specific questions. In particular, we were interested in understanding whether specific (i) user-related features (i.e. desire for control), (ii) robot-related features (i.e., attitude towards social influence of robots), and (iii) context-related features (i.e., collaborative vs. competitive scenario), may influence their trust towards the iCub robot. We found that participants conformed more to the iCubs answers when their decisions were about functional issues than when they were about social issues. Moreover, the few participants conforming to the iCubs answers for social issues also conformed less for functional issues. Trust in the robots functional savvy does not thus seem to be a pre-requisite for trust in its social savvy. Finally, desire for control, attitude towards social influence of robots and type of interaction scenario did not influence the trust in iCub. Results are discussed with relation to methodology of HRI research.
The COVID-19 pandemic has shaken the world to its core and has provoked an overnight exodus of developers that normally worked in an office setting to working from home. The magnitude of this shift and the factors that have accompanied this new unplanned work setting go beyond what the software engineering community has previously understood to be remote work. To find out how developers and their productivity were affected, we distributed two surveys (with a combined total of 3,634 responses that answered all required questions) -- weeks apart to understand the presence and prevalence of the benefits, challenges, and opportunities to improve this special circumstance of remote work. From our thematic qualitative analysis and statistical quantitative analysis, we find that there is a dichotomy of developer experiences influenced by many different factors (that for some are a benefit, while for others a challenge). For example, a benefit for some was being close to family members but for others having family members share their working space and interrupting their focus, was a challenge. Our surveys led to powerful narratives from respondents and revealed the scale at which these experiences exist to provide insights as to how the future of (pandemic) remote work can evolve.
Autonomous cars can perform poorly for many reasons. They may have perception issues, incorrect dynamics models, be unaware of obscure rules of human traffic systems, or follow certain rules too conservatively. Regardless of the exact failure mode of the car, often human drivers around the car are behaving correctly. For example, even if the car does not know that it should pull over when an ambulance races by, other humans on the road will know and will pull over. We propose to make socially cohesive cars that leverage the behavior of nearby human drivers to act in ways that are safer and more socially acceptable. The simple intuition behind our algorithm is that if all the humans are consistently behaving in a particular way, then the autonomous car probably should too. We analyze the performance of our algorithm in a variety of scenarios and conduct a user study to assess peoples attitudes towards socially cohesive cars. We find that people are surprisingly tolerant of mistakes that cohesive cars might make in order to get the benefits of driving in a car with a safer, or even just more socially acceptable behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا