Do you want to publish a course? Click here

Long time existence for semilinear wave equations with the inverse-square potential

100   0   0.0 ( 0 )
 Added by Wei Dai
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the semilinear wave equations with the inverse-square potential. By transferring the original equation to a fractional dimensional wave equation and analyzing the properties of its fundamental solution, we establish a long-time existence result, for sufficiently small, spherically symmetric initial data. Together with the previously known blow-up result, we determine the critical exponent which divides the global existence and finite time blow-up. Moreover, the sharp lower bounds of the lifespan are obtained, except for certain borderline case. In addition, our technology allows us to handle an extreme case for the potential, which has hardly been discussed in literature.



rate research

Read More

101 - Mengyun Liu , Chengbo Wang 2018
We study the global existence of solutions to semilinear wave equations with power-type nonlinearity and general lower order terms on $n$ dimensional nontrapping asymptotically Euclidean manifolds, when $n=3, 4$. In addition, we prove almost global existence with sharp lower bound of the lifespan for the four dimensional critical problem.
In this work, we investigate the influence of general damping and potential terms on the blow-up and lifespan estimates for energy solutions to power-type semilinear wave equations. The space-dependent damping and potential functions are assumed to be critical or short range, spherically symmetric perturbation. The blow up results and the upper bound of lifespan estimates are obtained by the so-called test function method. The key ingredient is to construct special positive solutions to the linear dual problem with the desired asymptotic behavior, which is reduced, in turn, to constructing solutions to certain elliptic eigenvalue problems.
135 - Yige Bai , Mengyun Liu 2018
We study the global existence of solutions to semilinear damped wave equations in the scattering case with derivative power-type nonlinearity on (1+3) dimensional nontrapping asymptotically Euclidean manifolds. The main idea is to exploit local energy estimate, together with local existence to convert the parameter $mu$ to small one.
112 - Mengyun Liu , Chengbo Wang 2018
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-posed in $H^{s}$ with $s = (n+5)/4$ in general. Moreover, when the nonlinearity is quadratic we establish a characterization of the structure of nonlinear terms in terms of the regularity. As a byproduct, we give an alternative proof of the failure of the local in time endpoint scale-invariant $L_{t}^{4/(n-1)}L_{x}^{infty}$ Strichartz estimates. Finally, as an application, we also prove ill-posed results for some semilinear half wave equations.
92 - Xiaofen Gao , Chengbin Xu 2019
In this paper, we study the long time behavior of the solution of nonlinear Schrodinger equation with a singular potential. We prove scattering below the ground state for the radial NLS with inverse-square potential in dimension two $$iu_t+Delta u-frac{a u}{|x|^2}= -|u|^pu$$ when $2<p<infty$ and $a>0$. This work extends the result in [13, 14, 16] to dimension 2D. The key point is a modified version of Arora-Dodson-Murphys approach [2].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا