Do you want to publish a course? Click here

Predicting Medical Interventions from Vital Parameters: Towards a Decision Support System for Remote Patient Monitoring

115   0   0.0 ( 0 )
 Added by Kordian Gontarska
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cardiovascular diseases and heart failures in particular are the main cause of non-communicable disease mortality in the world. Constant patient monitoring enables better medical treatment as it allows practitioners to react on time and provide the appropriate treatment. Telemedicine can provide constant remote monitoring so patients can stay in their homes, only requiring medical sensing equipment and network connections. A limiting factor for telemedical centers is the amount of patients that can be monitored simultaneously. We aim to increase this amount by implementing a decision support system. This paper investigates a machine learning model to estimate a risk score based on patient vital parameters that allows sorting all cases every day to help practitioners focus their limited capacities on the most severe cases. The model we propose reaches an AUCROC of 0.84, whereas the baseline rule-based model reaches an AUCROC of 0.73. Our results indicate that the usage of deep learning to improve the efficiency of telemedical centers is feasible. This way more patients could benefit from better health-care through remote monitoring.



rate research

Read More

Cough is one of the most common symptoms in all respiratory diseases. In cases like Chronic Obstructive Pulmonary Disease, Asthma, acute and chronic Bronchitis and the recent pandemic Covid-19, the early identification of cough is important to provide healthcare professionals with useful clinical information such as frequency, severity, and nature of cough to enable better diagnosis. This paper presents and demonstrates best feature selection using MFCC which can help to determine cough events, eventually helping a neural network to learn and improve accuracy of cough detection. The paper proposes to achieve performance of 97.77% Sensitivity (SE), 98.75% Specificity (SP) and 98.17% F1-score with a very light binary classification network of size close to 16K parameters, enabling fitment into smart IoT devices.
247 - Fadi Badra 2008
The Semantic Web is becoming more and more a reality, as the required technologies have reached an appropriate level of maturity. However, at this stage, it is important to provide tools facilitating the use and deployment of these technologies by end-users. In this paper, we describe EdHibou, an automatically generated, ontology-based graphical user interface that integrates in a semantic portal. The particularity of EdHibou is that it makes use of OWL reasoning capabilities to provide intelligent features, such as decision support, upon the underlying ontology. We present an application of EdHibou to medical decision support based on a formalization of clinical guidelines in OWL and show how it can be customized thanks to an ontology of graphical components.
Reinforcement Learning (RL) is emerging as tool for tackling complex control and decision-making problems. However, in high-risk environments such as healthcare, manufacturing, automotive or aerospace, it is often challenging to bridge the gap between an apparently optimal policy learnt by an agent and its real-world deployment, due to the uncertainties and risk associated with it. Broadly speaking RL agents face two kinds of uncertainty, 1. aleatoric uncertainty, which reflects randomness or noise in the dynamics of the world, and 2. epistemic uncertainty, which reflects the bounded knowledge of the agent due to model limitations and finite amount of information/data the agent has acquired about the world. These two types of uncertainty carry fundamentally different implications for the evaluation of performance and the level of risk or trust. Yet these aleatoric and epistemic uncertainties are generally confounded as standard and even distributional RL is agnostic to this difference. Here we propose how a distributional approach (UA-DQN) can be recast to render uncertainties by decomposing the net effects of each uncertainty. We demonstrate the operation of this method in grid world examples to build intuition and then show a proof of concept application for an RL agent operating as a clinical decision support system in critical care
127 - Arnaud Martin 2008
The textured images classification assumes to consider the images in terms of area with the same texture. In uncertain environment, it could be better to take an imprecise decision or to reject the area corresponding to an unlearning class. Moreover, on the areas that are the classification units, we can have more than one texture. These considerations allows us to develop a belief decision model permitting to reject an area as unlearning and to decide on unions and intersections of learning classes. The proposed approach finds all its justification in an application of seabed characterization from sonar images, which contributes to an illustration.
In this short paper, we present early insights from a Decision Support System for Customer Support Agents (CSAs) serving customers of a leading accounting software. The system is under development and is designed to provide suggestions to CSAs to make them more productive. A unique aspect of the solution is the use of bandit algorithms to create a tractable human-in-the-loop system that can learn from CSAs in an online fashion. In addition to discussing the ML aspects, we also bring out important insights we gleaned from early feedback from CSAs. These insights motivate our future work and also might be of wider interest to ML practitioners.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا