Do you want to publish a course? Click here

Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition

98   0   0.0 ( 0 )
 Added by Paul Festor
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reinforcement Learning (RL) is emerging as tool for tackling complex control and decision-making problems. However, in high-risk environments such as healthcare, manufacturing, automotive or aerospace, it is often challenging to bridge the gap between an apparently optimal policy learnt by an agent and its real-world deployment, due to the uncertainties and risk associated with it. Broadly speaking RL agents face two kinds of uncertainty, 1. aleatoric uncertainty, which reflects randomness or noise in the dynamics of the world, and 2. epistemic uncertainty, which reflects the bounded knowledge of the agent due to model limitations and finite amount of information/data the agent has acquired about the world. These two types of uncertainty carry fundamentally different implications for the evaluation of performance and the level of risk or trust. Yet these aleatoric and epistemic uncertainties are generally confounded as standard and even distributional RL is agnostic to this difference. Here we propose how a distributional approach (UA-DQN) can be recast to render uncertainties by decomposing the net effects of each uncertainty. We demonstrate the operation of this method in grid world examples to build intuition and then show a proof of concept application for an RL agent operating as a clinical decision support system in critical care



rate research

Read More

We present a reinforcement learning (RL) approach for robust optimisation of risk-aware performance criteria. To allow agents to express a wide variety of risk-reward profiles, we assess the value of a policy using rank dependent expected utility (RDEU). RDEU allows the agent to seek gains, while simultaneously protecting themselves against downside events. To robustify optimal policies against model uncertainty, we assess a policy not by its distribution, but rather, by the worst possible distribution that lies within a Wasserstein ball around it. Thus, our problem formulation may be viewed as an actor choosing a policy (the outer problem), and the adversary then acting to worsen the performance of that strategy (the inner problem). We develop explicit policy gradient formulae for the inner and outer problems, and show its efficacy on three prototypical financial problems: robust portfolio allocation, optimising a benchmark, and statistical arbitrage
Reinforcement learning can enable complex, adaptive behavior to be learned automatically for autonomous robotic platforms. However, practical deployment of reinforcement learning methods must contend with the fact that the training process itself can be unsafe for the robot. In this paper, we consider the specific case of a mobile robot learning to navigate an a priori unknown environment while avoiding collisions. In order to learn collision avoidance, the robot must experience collisions at training time. However, high-speed collisions, even at training time, could damage the robot. A successful learning method must therefore proceed cautiously, experiencing only low-speed collisions until it gains confidence. To this end, we present an uncertainty-aware model-based learning algorithm that estimates the probability of collision together with a statistical estimate of uncertainty. By formulating an uncertainty-dependent cost function, we show that the algorithm naturally chooses to proceed cautiously in unfamiliar environments, and increases the velocity of the robot in settings where it has high confidence. Our predictive model is based on bootstrapped neural networks using dropout, allowing it to process raw sensory inputs from high-bandwidth sensors such as cameras. Our experimental evaluation demonstrates that our method effectively minimizes dangerous collisions at training time in an obstacle avoidance task for a simulated and real-world quadrotor, and a real-world RC car. Videos of the experiments can be found at https://sites.google.com/site/probcoll.
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account emph{risk}, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile risk-constrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
We introduce a new generative model for human planning under the Bayesian Inverse Reinforcement Learning (BIRL) framework which takes into account the fact that humans often plan using hierarchical strategies. We describe the Bayesian Inverse Hierarchical RL (BIHRL) algorithm for inferring the values of hierarchical planners, and use an illustrative toy model to show that BIHRL retains accuracy where standard BIRL fails. Furthermore, BIHRL is able to accurately predict the goals of `Wikispeedia game players, with inclusion of hierarchical structure in the model resulting in a large boost in accuracy. We show that BIHRL is able to significantly outperform BIRL even when we only have a weak prior on the hierarchical structure of the plans available to the agent, and discuss the significant challenges that remain for scaling up this framework to more realistic settings.
Reinforcement learning agents are faced with two types of uncertainty. Epistemic uncertainty stems from limited data and is useful for exploration, whereas aleatoric uncertainty arises from stochastic environments and must be accounted for in risk-sensitive applications. We highlight the challenges involved in simultaneously estimating both of them, and propose a framework for disentangling and estimating these uncertainties on learned Q-values. We derive unbiased estimators of these uncertainties and introduce an uncertainty-aware DQN algorithm, which we show exhibits safe learning behavior and outperforms other DQN variants on the MinAtar testbed.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا