Do you want to publish a course? Click here

Belief decision support and reject for textured images characterization

121   0   0.0 ( 0 )
 Added by Arnaud Martin
 Publication date 2008
and research's language is English
 Authors Arnaud Martin




Ask ChatGPT about the research

The textured images classification assumes to consider the images in terms of area with the same texture. In uncertain environment, it could be better to take an imprecise decision or to reject the area corresponding to an unlearning class. Moreover, on the areas that are the classification units, we can have more than one texture. These considerations allows us to develop a belief decision model permitting to reject an area as unlearning and to decide on unions and intersections of learning classes. The proposed approach finds all its justification in an application of seabed characterization from sonar images, which contributes to an illustration.



rate research

Read More

In this work, we introduce a new approach for the efficient solution of autonomous decision and planning problems, with a special focus on decision making under uncertainty and belief space planning (BSP) in high-dimensional state spaces. Usually, to solve the decision problem, we identify the optimal action, according to some objective function. We claim that we can sometimes generate and solve an analogous yet simplified decision problem, which can be solved more efficiently; a wise simplification method can lead to the same action selection, or one for which the maximal loss can be guaranteed. Furthermore, such simplification is separated from the state inference, and does not compromise its accuracy, as the selected action would finally be applied on the original state. First, we present the concept for general decision problems, and provide a theoretical framework for a coherent formulation of the approach. We then practically apply these ideas to BSP problems, which can be simplified by considering a sparse approximation of the initial (Gaussian) belief. The scalable belief sparsification algorithm we provide is able to yield solutions which are guaranteed to be consistent with the original problem. We demonstrate the benefits of the approach in the solution of a highly realistic active-SLAM problem, and manage to significantly reduce computation time, with practically no loss in the quality of solution. This work is conceptual and fundamental, and holds numerous possible extensions.
242 - Fadi Badra 2008
The Semantic Web is becoming more and more a reality, as the required technologies have reached an appropriate level of maturity. However, at this stage, it is important to provide tools facilitating the use and deployment of these technologies by end-users. In this paper, we describe EdHibou, an automatically generated, ontology-based graphical user interface that integrates in a semantic portal. The particularity of EdHibou is that it makes use of OWL reasoning capabilities to provide intelligent features, such as decision support, upon the underlying ontology. We present an application of EdHibou to medical decision support based on a formalization of clinical guidelines in OWL and show how it can be customized thanks to an ontology of graphical components.
It is a long-standing objective to ease the computation burden incurred by the decision making process. Identification of this mechanisms sensitivity to simplification has tremendous ramifications. Yet, algorithms for decision making under uncertainty usually lean on approximations or heuristics without quantifying their effect. Therefore, challenging scenarios could severely impair the performance of such methods. In this paper, we extend the decision making mechanism to the whole by removing standard approximations and considering all previously suppressed stochastic sources of variability. On top of this extension, our key contribution is a novel framework to simplify decision making while assessing and controlling online the simplifications impact. Furthermore, we present novel stochastic bounds on the return and characterize online the effect of simplification using this framework on a particular simplification technique - reducing the number of samples in belief representation for planning. Finally, we verify the advantages of our approach through extensive simulations.
Cardiovascular diseases and heart failures in particular are the main cause of non-communicable disease mortality in the world. Constant patient monitoring enables better medical treatment as it allows practitioners to react on time and provide the appropriate treatment. Telemedicine can provide constant remote monitoring so patients can stay in their homes, only requiring medical sensing equipment and network connections. A limiting factor for telemedical centers is the amount of patients that can be monitored simultaneously. We aim to increase this amount by implementing a decision support system. This paper investigates a machine learning model to estimate a risk score based on patient vital parameters that allows sorting all cases every day to help practitioners focus their limited capacities on the most severe cases. The model we propose reaches an AUCROC of 0.84, whereas the baseline rule-based model reaches an AUCROC of 0.73. Our results indicate that the usage of deep learning to improve the efficiency of telemedical centers is feasible. This way more patients could benefit from better health-care through remote monitoring.
The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($pi_0$), but assuming that future actions will be taken by $pi_1$. When $pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا