No Arabic abstract
We study $eta$-deformations of principal chiral model (PCM) from the viewpoint of a 4D Chern-Simons (CS) theory. The $eta$-deformed PCM has originally been derived from the 4D CS theory by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824]. The derivation is based on a twist function in the rational description. On the other hand, we start with a twist function in the trigonometric description and discuss possible boundary conditions. We show that a certain boundary condition reproduces the usual $eta$-deformed PCM and another one leads to a new kind of Yang-Baxter deformation.
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable deformed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
We derive the Faddeev-Reshetikhin (FR) model from a four-dimensional Chern- Simons theory with two order surface defects by following the work by Costello and Yamazaki [arXiv:1908.02289]. Then we present a trigonometric deformation of the FR model by employing a boundary condition with an R-operator of Drinfeld-Jimbo type. This is a generalization of the work by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824] from the disorder surface defect case to the order one.
We derive, within the Hamiltonian formalism, the classical exchange algebra of a lambda deformed string sigma model in a symmetric space directly from a 4d holomorphic Chern-Simons theory. The explicit forms of the extended Lax connection and R-matrix entering the Maillet bracket of the lambda model are explained from a symmetry principle. This approach, based on a gauge theory, may provide a mechanism for taming the non-ultralocality that afflicts most of the integrable string theories propagating in coset spaces.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We present homogeneous Yang-Baxter deformations of the AdS$_5times$S$^5$ supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al [arXiv:1909.13824] so as to reproduce the 2D symmetric coset sigma model, and specify boundary conditions governing homogeneous Yang-Baxter deformations. Then the conditions are applicable for the AdS$_5times$S$^5$ supercoset sigma model case as well. In addition, homogeneous bi-Yang-Baxter deformation is also discussed.