No Arabic abstract
Tasks that rely on multi-modal information typically include a fusion module that combines information from different modalities. In this work, we develop a Refiner Fusion Network (ReFNet) that enables fusion modules to combine strong unimodal representation with strong multimodal representations. ReFNet combines the fusion network with a decoding/defusing module, which imposes a modality-centric responsibility condition. This approach addresses a big gap in existing multimodal fusion frameworks by ensuring that both unimodal and fused representations are strongly encoded in the latent fusion space. We demonstrate that the Refiner Fusion Network can improve upon performance of powerful baseline fusion modules such as multimodal transformers. The refiner network enables inducing graphical representations of the fused embeddings in the latent space, which we prove under certain conditions and is supported by strong empirical results in the numerical experiments. These graph structures are further strengthened by combining the ReFNet with a Multi-Similarity contrastive loss function. The modular nature of Refiner Fusion Network lends itself to be combined with different fusion architectures easily, and in addition, the refiner step can be applied for pre-training on unlabeled datasets, thus leveraging unsupervised data towards improving performance. We demonstrate the power of Refiner Fusion Networks on three datasets, and further show that they can maintain performance with only a small fraction of labeled data.
One of the major reasons for misclassification of multiplex actions during action recognition is the unavailability of complementary features that provide the semantic information about the actions. In different domains these features are present with different scales and intensities. In existing literature, features are extracted independently in different domains, but the benefits from fusing these multidomain features are not realized. To address this challenge and to extract complete set of complementary information, in this paper, we propose a novel multidomain multimodal fusion framework that extracts complementary and distinct features from different domains of the input modality. We transform input inertial data into signal images, and then make the input modality multidomain and multimodal by transforming spatial domain information into frequency and time-spectrum domain using Discrete Fourier Transform (DFT) and Gabor wavelet transform (GWT) respectively. Features in different domains are extracted by Convolutional Neural networks (CNNs) and then fused by Canonical Correlation based Fusion (CCF) for improving the accuracy of human action recognition. Experimental results on three inertial datasets show the superiority of the proposed method when compared to the state-of-the-art.
This paper proposes a method for representation learning of multimodal data using contrastive losses. A traditional approach is to contrast different modalities to learn the information shared between them. However, that approach could fail to learn the complementary synergies between modalities that might be useful for downstream tasks. Another approach is to concatenate all the modalities into a tuple and then contrast positive and negative tuple correspondences. However, that approach could consider only the stronger modalities while ignoring the weaker ones. To address these issues, we propose a novel contrastive learning objective, TupleInfoNCE. It contrasts tuples based not only on positive and negative correspondences but also by composing new negative tuples using modalities describing different scenes. Training with these additional negatives encourages the learning model to examine the correspondences among modalities in the same tuple, ensuring that weak modalities are not ignored. We provide a theoretical justification based on mutual information for why this approach works, and we propose a sample optimization algorithm to generate positive and negative samples to maximize training efficacy. We find that TupleInfoNCE significantly outperforms the previous state of the arts on three different downstream tasks.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion) is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Users of social networks tend to post and share content with little restraint. Hence, rumors and fake news can quickly spread on a huge scale. This may pose a threat to the credibility of social media and can cause serious consequences in real life. Therefore, the task of rumor detection and verification has become extremely important. Assessing the veracity of a social media message (e.g., by fact checkers) involves analyzing the text of the message, its context and any multimedia attachment. This is a very time-consuming task that can be much helped by machine learning. In the literature, most message veracity verification methods only exploit textual contents and metadata. Very few take both textual and visual contents, and more particularly images, into account. In this paper, we second the hypothesis that exploiting all of the components of a social media post enhances the accuracy of veracity detection. To further the state of the art, we first propose using a set of advanced image features that are inspired from the field of image quality assessment, which effectively contributes to rumor detection. These metrics are good indicators for the detection of fake images, even for those generated by advanced techniques like generative adversarial networks (GANs). Then, we introduce the Multimodal fusiON framework to assess message veracIty in social neTwORks (MONITOR), which exploits all message features (i.e., text, social context, and image features) by supervised machine learning. Such algorithms provide interpretability and explainability in the decisions taken, which we believe is particularly important in the context of rumor verification. Experimental results show that MONITOR can detect rumors with an accuracy of 96% and 89% on the MediaEval benchmark and the FakeNewsNet dataset, respectively. These results are significantly better than those of state-of-the-art machine learning baselines.
Deep multimodal fusion by using multiple sources of data for classification or regression has exhibited a clear advantage over the unimodal counterpart on various applications. Yet, current methods including aggregation-based and alignment-based fusion are still inadequate in balancing the trade-off between inter-modal fusion and intra-modal processing, incurring a bottleneck of performance improvement. To this end, this paper proposes Channel-Exchanging-Network (CEN), a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured by the magnitude of Batch-Normalization (BN) scaling factor during training. The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the effectiveness of our CEN compared to current state-of-the-art methods. Detailed ablation studies have also been carried out, which provably affirm the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.