Do you want to publish a course? Click here

Deep Multimodal Fusion by Channel Exchanging

301   0   0.0 ( 0 )
 Added by Yikai Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep multimodal fusion by using multiple sources of data for classification or regression has exhibited a clear advantage over the unimodal counterpart on various applications. Yet, current methods including aggregation-based and alignment-based fusion are still inadequate in balancing the trade-off between inter-modal fusion and intra-modal processing, incurring a bottleneck of performance improvement. To this end, this paper proposes Channel-Exchanging-Network (CEN), a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured by the magnitude of Batch-Normalization (BN) scaling factor during training. The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the effectiveness of our CEN compared to current state-of-the-art methods. Detailed ablation studies have also been carried out, which provably affirm the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.



rate research

Read More

Clinical decision-making in oncology involves multimodal data such as radiology scans, molecular profiling, histopathology slides, and clinical factors. Despite the importance of these modalities individually, no deep learning framework to date has combined them all to predict patient prognosis. Here, we predict the overall survival (OS) of glioma patients from diverse multimodal data with a Deep Orthogonal Fusion (DOF) model. The model learns to combine information from multiparametric MRI exams, biopsy-based modalities (such as H&E slide images and/or DNA sequencing), and clinical variables into a comprehensive multimodal risk score. Prognostic embeddings from each modality are learned and combined via attention-gated tensor fusion. To maximize the information gleaned from each modality, we introduce a multimodal orthogonalization (MMO) loss term that increases model performance by incentivizing constituent embeddings to be more complementary. DOF predicts OS in glioma patients with a median C-index of 0.788 +/- 0.067, significantly outperforming (p=0.023) the best performing unimodal model with a median C-index of 0.718 +/- 0.064. The prognostic model significantly stratifies glioma patients by OS within clinical subsets, adding further granularity to prognostic clinical grading and molecular subtyping.
The Tactical Driver Behavior modeling problem requires understanding of driver actions in complicated urban scenarios from a rich multi modal signals including video, LiDAR and CAN bus data streams. However, the majority of deep learning research is focused either on learning the vehicle/environment state (sensor fusion) or the driver policy (from temporal data), but not both. Learning both tasks end-to-end offers the richest distillation of knowledge, but presents challenges in formulation and successful training. In this work, we propose promising first steps in this direction. Inspired by the gating mechanisms in LSTM, we propose gated recurrent fusion units (GRFU) that learn fusion weighting and temporal weighting simultaneously. We demonstrate its superior performance over multimodal and temporal baselines in supervised regression and classification tasks, all in the realm of autonomous navigation. We note a 10% improvement in the mAP score over state-of-the-art for tactical driver behavior classification in HDD dataset and a 20% drop in overall Mean squared error for steering action regression on TORCS dataset.
Transformers have offered a new methodology of designing neural networks for visual recognition. Compared to convolutional networks, Transformers enjoy the ability of referring to global features at each stage, yet the attention module brings higher computational overhead that obstructs the application of Transformers to process high-resolution visual data. This paper aims to alleviate the conflict between efficiency and flexibility, for which we propose a specialized token for each region that serves as a messenger (MSG). Hence, by manipulating these MSG tokens, one can flexibly exchange visual information across regions and the computational complexity is reduced. We then integrate the MSG token into a multi-scale architecture named MSG-Transformer. In standard image classification and object detection, MSG-Transformer achieves competitive performance and the inference on both GPU and CPU is accelerated. The code will be available at https://github.com/hustvl/MSG-Transformer.
88 - Yikai Wang , Fuchun Sun , Ming Lu 2021
We propose a compact and effective framework to fuse multimodal features at multiple layers in a single network. The framework consists of two innovative fusion schemes. Firstly, unlike existing multimodal methods that necessitate individual encoders for different modalities, we verify that multimodal features can be learnt within a shared single network by merely maintaining modality-specific batch normalization layers in the encoder, which also enables implicit fusion via joint feature representation learning. Secondly, we propose a bidirectional multi-layer fusion scheme, where multimodal features can be exploited progressively. To take advantage of such scheme, we introduce two asymmetric fusion operations including channel shuffle and pixel shift, which learn different fused features with respect to different fusion directions. These two operations are parameter-free and strengthen the multimodal feature interactions across channels as well as enhance the spatial feature discrimination within channels. We conduct extensive experiments on semantic segmentation and image translation tasks, based on three publicly available datasets covering diverse modalities. Results indicate that our proposed framework is general, compact and is superior to state-of-the-art fusion frameworks.
Tasks that rely on multi-modal information typically include a fusion module that combines information from different modalities. In this work, we develop a Refiner Fusion Network (ReFNet) that enables fusion modules to combine strong unimodal representation with strong multimodal representations. ReFNet combines the fusion network with a decoding/defusing module, which imposes a modality-centric responsibility condition. This approach addresses a big gap in existing multimodal fusion frameworks by ensuring that both unimodal and fused representations are strongly encoded in the latent fusion space. We demonstrate that the Refiner Fusion Network can improve upon performance of powerful baseline fusion modules such as multimodal transformers. The refiner network enables inducing graphical representations of the fused embeddings in the latent space, which we prove under certain conditions and is supported by strong empirical results in the numerical experiments. These graph structures are further strengthened by combining the ReFNet with a Multi-Similarity contrastive loss function. The modular nature of Refiner Fusion Network lends itself to be combined with different fusion architectures easily, and in addition, the refiner step can be applied for pre-training on unlabeled datasets, thus leveraging unsupervised data towards improving performance. We demonstrate the power of Refiner Fusion Networks on three datasets, and further show that they can maintain performance with only a small fraction of labeled data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا