Do you want to publish a course? Click here

Attention Bottlenecks for Multimodal Fusion

205   0   0.0 ( 0 )
 Added by Arsha Nagrani
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion) is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.



rate research

Read More

Accurate detection of obstacles in 3D is an essential task for autonomous driving and intelligent transportation. In this work, we propose a general multimodal fusion framework FusionPainting to fuse the 2D RGB image and 3D point clouds at a semantic level for boosting the 3D object detection task. Especially, the FusionPainting framework consists of three main modules: a multi-modal semantic segmentation module, an adaptive attention-based semantic fusion module, and a 3D object detector. First, semantic information is obtained for 2D images and 3D Lidar point clouds based on 2D and 3D segmentation approaches. Then the segmentation results from different sensors are adaptively fused based on the proposed attention-based semantic fusion module. Finally, the point clouds painted with the fused semantic label are sent to the 3D detector for obtaining the 3D objection results. The effectiveness of the proposed framework has been verified on the large-scale nuScenes detection benchmark by comparing it with three different baselines. The experimental results show that the fusion strategy can significantly improve the detection performance compared to the methods using only point clouds, and the methods using point clouds only painted with 2D segmentation information. Furthermore, the proposed approach outperforms other state-of-the-art methods on the nuScenes testing benchmark.
Tasks that rely on multi-modal information typically include a fusion module that combines information from different modalities. In this work, we develop a Refiner Fusion Network (ReFNet) that enables fusion modules to combine strong unimodal representation with strong multimodal representations. ReFNet combines the fusion network with a decoding/defusing module, which imposes a modality-centric responsibility condition. This approach addresses a big gap in existing multimodal fusion frameworks by ensuring that both unimodal and fused representations are strongly encoded in the latent fusion space. We demonstrate that the Refiner Fusion Network can improve upon performance of powerful baseline fusion modules such as multimodal transformers. The refiner network enables inducing graphical representations of the fused embeddings in the latent space, which we prove under certain conditions and is supported by strong empirical results in the numerical experiments. These graph structures are further strengthened by combining the ReFNet with a Multi-Similarity contrastive loss function. The modular nature of Refiner Fusion Network lends itself to be combined with different fusion architectures easily, and in addition, the refiner step can be applied for pre-training on unlabeled datasets, thus leveraging unsupervised data towards improving performance. We demonstrate the power of Refiner Fusion Networks on three datasets, and further show that they can maintain performance with only a small fraction of labeled data.
Vision and language tasks have benefited from attention. There have been a number of different attention models proposed. However, the scale at which attention needs to be applied has not been well examined. Particularly, in this work, we propose a new method Granular Multi-modal Attention, where we aim to particularly address the question of the right granularity at which one needs to attend while solving the Visual Dialog task. The proposed method shows improvement in both image and text attention networks. We then propose a granular Multi-modal Attention network that jointly attends on the image and text granules and shows the best performance. With this work, we observe that obtaining granular attention and doing exhaustive Multi-modal Attention appears to be the best way to attend while solving visual dialog.
Inspired by the fact that different modalities in videos carry complementary information, we propose a Multimodal Semantic Attention Network(MSAN), which is a new encoder-decoder framework incorporating multimodal semantic attributes for video captioning. In the encoding phase, we detect and generate multimodal semantic attributes by formulating it as a multi-label classification problem. Moreover, we add auxiliary classification loss to our model that can obtain more effective visual features and high-level multimodal semantic attribute distributions for sufficient video encoding. In the decoding phase, we extend each weight matrix of the conventional LSTM to an ensemble of attribute-dependent weight matrices, and employ attention mechanism to pay attention to different attributes at each time of the captioning process. We evaluate algorithm on two popular public benchmarks: MSVD and MSR-VTT, achieving competitive results with current state-of-the-art across six evaluation metrics.
This paper proposes a method for representation learning of multimodal data using contrastive losses. A traditional approach is to contrast different modalities to learn the information shared between them. However, that approach could fail to learn the complementary synergies between modalities that might be useful for downstream tasks. Another approach is to concatenate all the modalities into a tuple and then contrast positive and negative tuple correspondences. However, that approach could consider only the stronger modalities while ignoring the weaker ones. To address these issues, we propose a novel contrastive learning objective, TupleInfoNCE. It contrasts tuples based not only on positive and negative correspondences but also by composing new negative tuples using modalities describing different scenes. Training with these additional negatives encourages the learning model to examine the correspondences among modalities in the same tuple, ensuring that weak modalities are not ignored. We provide a theoretical justification based on mutual information for why this approach works, and we propose a sample optimization algorithm to generate positive and negative samples to maximize training efficacy. We find that TupleInfoNCE significantly outperforms the previous state of the arts on three different downstream tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا