No Arabic abstract
In this paper we propose a novel observer to solve the problem of visual simultaneous localization and mapping, using the information of only the bearing vectors of landmarks observed from a single monocular camera and body-fixed velocities. The system state evolves on the manifold $SE(3)times mathbb{R}^{3n}$, on which we design dynamic extensions carefully in order to generate an invariant foliation, such that the problem is reformulated into online parameter identification. Then, following the recently introduced parameter estimation-based observer, we provide a novel and simple solution to address the problem. A notable merit is that the proposed observer guarantees almost global asymptotic stability requiring neither persistent excitation nor uniform complete observability, which, however, are widely adopted in the existing works.
State estimation problems without absolute position measurements routinely arise in navigation of unmanned aerial vehicles, autonomous ground vehicles, etc., whose proper operation relies on accurate state estimates and reliable covariances. Unaware of absolute positions, these problems have immanent unobservable directions. Traditional causal estimators, however, usually gain spurious information on the unobservable directions, leading to over-confident covariance inconsistent with actual estimator errors. The consistency problem of fixed-lag smoothers (FLSs) has only been attacked by the first estimate Jacobian (FEJ) technique because of the complexity to analyze their observability property. But the FEJ has several drawbacks hampering its wide adoption. To ensure the consistency of a FLS, this paper introduces the right invariant error formulation into the FLS framework. To our knowledge, we are the first to analyze the observability of a FLS with the right invariant error. Our main contributions are twofold. As the first novelty, to bypass the complexity of analysis with the classic observability matrix, we show that observability analysis of FLSs can be done equivalently on the linearized system. Second, we prove that the inconsistency issue in the traditional FLS can be elegantly solved by the right invariant error formulation without artificially correcting Jacobians. By applying the proposed FLS to the monocular visual inertial simultaneous localization and mapping (SLAM) problem, we confirm that the method consistently estimates covariance similarly to a batch smoother in simulation and that our method achieved comparable accuracy as traditional FLSs on real data.
We present a new quadrotor geometric control scheme that is capable of tracking highly aggressive trajectories. Unlike previous works, our geometric controller uses the logarithmic map of SO(3) to express rotational error in the Lie algebra, allowing us to treat the manifold in a more effective and natural manner, and can be shown to be globally attractive. We show the performance of our control scheme against highly aggressive trajectories in simulation experiments. Additionally, we present an adaptation of this controller that allows us to interface effectively with the angular rate controllers on an onboard flight control unit and show the ability of this adapted control scheme to track aggressive trajectories on a quadrotor hardware platform.
This paper provides an exponential stability result for the adaptive anti-unwinding attitude tracking control problem of a rigid body with uncertain but constant inertia parameters, without requiring the satisfaction of persistent excitation (PE) condition. Specifically, a composite immersion and invariance (I&I) adaptive controller is derived by integrating a prediction-error-driven learning law into the dynamically scaled I&I adaptive control framework, wherein we modify the scaling factor so that the algorithm design does not involve any dynamic gains. To avoid the unwinding problem, a barrier function is introduced as the attitude error function, along with the tactful establishment of two crucial algebra properties for exponential stability analysis. The regressor filtering method is adopted in combination with the dynamic regressor extension and mixing (DREM) procedure to acquire the prediction error using only easily obtainable signals. In particular, aiding by a constructive liner time-varying filter, the scalar regressor of DREM is extended to generate a new exciting counterpart. In this way, the derived controller is shown to permit closed-loop exponential stability without PE, in the sense that both output-tracking and parameter estimation errors exponentially converge to zero. Further, the composite learning law is augmented with a power term to achieve synchronized finite/fixed-time parameter convergence. Numerical simulations are performed to verify the theoretical findings.
Recently, the philosophy of visual saliency and attention has started to gain popularity in the robotics community. Therefore, this paper aims to mimic this mechanism in SLAM framework by using saliency prediction model. Comparing with traditional SLAM that treated all feature points as equal important in optimization process, we think that the salient feature points should play more important role in optimization process. Therefore, we proposed a saliency model to predict the saliency map, which can capture both scene semantic and geometric information. Then, we proposed Salient Bundle Adjustment by using the value of saliency map as the weight of the feature points in traditional Bundle Adjustment approach. Exhaustive experiments conducted with the state-of-the-art algorithm in KITTI and EuRoc datasets show that our proposed algorithm outperforms existing algorithms in both indoor and outdoor environments. Finally, we will make our saliency dataset and relevant source code open-source for enabling future research.
Active Search and Tracking for search and rescue missions or collaborative mobile robotics relies on the actuation of a sensing platform to detect and localize a target. In this paper we focus on visually detecting a radio-emitting target with an aerial robot equipped with a radio receiver and a camera. Visual-based tracking provides high accuracy, but the directionality of the sensing domain may require long search times before detecting the target. Conversely, radio signals have larger coverage, but lower tracking accuracy. Thus, we design a Recursive Bayesian Estimation scheme that uses camera observations to refine radio measurements. To regulate the camera pose, we design an optimal controller whose cost function is built upon a probabilistic map. Theoretical results support the proposed algorithm, while numerical analyses show higher robustness and efficiency with respect to visual and radio-only baselines.