Do you want to publish a course? Click here

Composite Adaptive Control for Anti-Unwinding Attitude Maneuvers: An Exponential Stability Result Without Persistent Excitation

87   0   0.0 ( 0 )
 Added by Xiaodong Shao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper provides an exponential stability result for the adaptive anti-unwinding attitude tracking control problem of a rigid body with uncertain but constant inertia parameters, without requiring the satisfaction of persistent excitation (PE) condition. Specifically, a composite immersion and invariance (I&I) adaptive controller is derived by integrating a prediction-error-driven learning law into the dynamically scaled I&I adaptive control framework, wherein we modify the scaling factor so that the algorithm design does not involve any dynamic gains. To avoid the unwinding problem, a barrier function is introduced as the attitude error function, along with the tactful establishment of two crucial algebra properties for exponential stability analysis. The regressor filtering method is adopted in combination with the dynamic regressor extension and mixing (DREM) procedure to acquire the prediction error using only easily obtainable signals. In particular, aiding by a constructive liner time-varying filter, the scalar regressor of DREM is extended to generate a new exciting counterpart. In this way, the derived controller is shown to permit closed-loop exponential stability without PE, in the sense that both output-tracking and parameter estimation errors exponentially converge to zero. Further, the composite learning law is augmented with a power term to achieve synchronized finite/fixed-time parameter convergence. Numerical simulations are performed to verify the theoretical findings.



rate research

Read More

In the era of digitalization, utilization of data-driven control approaches to minimize energy consumption of residential/commercial building is of far-reaching significance. Meanwhile, A number of recent approaches based on the application of Willems fundamental lemma for data-driven controller design from input/output measurements are very promising for deterministic LTI systems. This paper addresses the key noise-free assumption, and extends these data-driven control schemes to adaptive building control with measured process noise and unknown measurement noise via a robust bilevel formulation, whose upper level ensures robustness and whose lower level guarantees prediction quality. Corresponding numerical improvements and an active excitation mechanism are proposed to enable a computationally efficient reliable operation. The efficacy of the proposed scheme is validated by a numerical example and a real-world experiment on a lecture hall on EPFL campus.
74 - Bowen Yi , Chi Jin , Lei Wang 2021
In this paper we propose a novel observer to solve the problem of visual simultaneous localization and mapping, using the information of only the bearing vectors of landmarks observed from a single monocular camera and body-fixed velocities. The system state evolves on the manifold $SE(3)times mathbb{R}^{3n}$, on which we design dynamic extensions carefully in order to generate an invariant foliation, such that the problem is reformulated into online parameter identification. Then, following the recently introduced parameter estimation-based observer, we provide a novel and simple solution to address the problem. A notable merit is that the proposed observer guarantees almost global asymptotic stability requiring neither persistent excitation nor uniform complete observability, which, however, are widely adopted in the existing works.
177 - Hao Zhou , Anye Zhou , Tienan Li 2021
Current commercial adaptive cruise control (ACC) systems consist of an upper-level planner controller that decides the optimal trajectory that should be followed, and a low-level controller in charge of sending the gas/brake signals to the mechanical system to actually move the vehicle. We find that the low-level controller has a significant impact on the string stability (SS) even if the planner is string stable: (i) a slow controller deteriorates the SS, (ii) slow controllers are common as they arise from insufficient control gains, from a weak gas/brake system or both, and (iii) the integral term in a slow controller causes undesired overshooting which affects the SS. Accordingly, we suggest tuning up the proportional/feedforward gain and ensuring the gas/brake is not weak. The study results are validated both numerically and empirically with data from commercial cars.
The paper considers autonomous rendezvous maneuver and proximity operations of two spacecraft in presence of obstacles. A strategy that combines guidance and control algorithms is analyzed. The proposed closed-loop system is able to guarantee a safe path in a real environment, as well as robustness with respect to external disturbances and dynamic obstacles. The guidance strategy exploits a suitably designed Artificial Potential Field (APF), while the controller relies on Sliding Mode Control (SMC), for both position and attitude tracking of the spacecraft. As for the position control, two different first order SMC methods are considered, namely the component-wise and the simplex-based control techniques. The proposed integrated guidance and control strategy is validated by extensive simulations performed with a six degree-of-freedom (DOF) orbital simulator and appears suitable for real-time control with minimal on-board computational effort. Fuel consumption and control effort are evaluated, including different update frequencies of the closed-loop software.
An autonomous adaptive MPC architecture is presented for control of heating, ventilation and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A year long simulation with a realistic plant shows that both of the features of the proposed architecture - periodic model and disturbance update and convexification of the planning problem - are essential to get the performance improvement over a commonly used baseline controller. Without these features, though MPC can outperform the baseline controller in certain situations, the benefits may not be substantial enough to warrant the investment in MPC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا