No Arabic abstract
Speech-based image retrieval has been studied as a proxy for joint representation learning, usually without emphasis on retrieval itself. As such, it is unclear how well speech-based retrieval can work in practice -- both in an absolute sense and versus alternative strategies that combine automatic speech recognition (ASR) with strong text encoders. In this work, we extensively study and expand choices of encoder architectures, training methodology (including unimodal and multimodal pretraining), and other factors. Our experiments cover different types of speech in three datasets: Flickr Audio, Places Audio, and Localized Narratives. Our best model configuration achieves large gains over state of the art, e.g., pushing recall-at-one from 21.8% to 33.2% for Flickr Audio and 27.6% to 53.4% for Places Audio. We also show our best speech-based models can match or exceed cascaded ASR-to-text encoding when speech is spontaneous, accented, or otherwise hard to automatically transcribe.
Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval~(VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between sentences, the Language-Language Retrieval~(LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.
There is growing interest in models that can learn from unlabelled speech paired with visual context. This setting is relevant for low-resource speech processing, robotics, and human language acquisition research. Here we study how a visually grounded speech model, trained on images of scenes paired with spoken captions, captures aspects of semantics. We use an external image tagger to generate soft text labels from images, which serve as targets for a neural model that maps untranscribed speech to (semantic) keyword labels. We introduce a newly collected data set of human semantic relevance judgements and an associated task, semantic speech retrieval, where the goal is to search for spoken utterances that are semantically relevant to a given text query. Without seeing any text, the model trained on parallel speech and images achieves a precision of almost 60% on its top ten semantic retrievals. Compared to a supervised model trained on transcriptions, our model matches human judgements better by some measures, especially in retrieving non-verbatim semantic matches. We perform an extensive analysis of the model and its resulting representations.
Given a collection of untrimmed and unsegmented videos, video corpus moment retrieval (VCMR) is to retrieve a temporal moment (i.e., a fraction of a video) that semantically corresponds to a given text query. As video and text are from two distinct feature spaces, there are two general approaches to address VCMR: (i) to separately encode each modality representations, then align the two modality representations for query processing, and (ii) to adopt fine-grained cross-modal interaction to learn multi-modal representations for query processing. While the second approach often leads to better retrieval accuracy, the first approach is far more efficient. In this paper, we propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR. We adopt the first approach and introduce two contrastive learning objectives to refine video encoder and text encoder to learn video and text representations separately but with better alignment for VCMR. The video contrastive learning (VideoCL) is to maximize mutual information between query and candidate video at video-level. The frame contrastive learning (FrameCL) aims to highlight the moment region corresponds to the query at frame-level, within a video. Experimental results show that, although ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.
Despite the achievements of large-scale multimodal pre-training approaches, cross-modal retrieval, e.g., image-text retrieval, remains a challenging task. To bridge the semantic gap between the two modalities, previous studies mainly focus on word-region alignment at the object level, lacking the matching between the linguistic relation among the words and the visual relation among the regions. The neglect of such relation consistency impairs the contextualized representation of image-text pairs and hinders the model performance and the interpretability. In this paper, we first propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations. In response, we present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions from the two modalities mutually via inter-modal alignment. The IAIS regularizer boosts the performance of prevailing models on Flickr30k and MS COCO datasets by a considerable margin, which demonstrates the superiority of our approach.
We present a novel method for aligning a sequence of instructions to a video of someone carrying out a task. In particular, we focus on the cooking domain, where the instructions correspond to the recipe. Our technique relies on an HMM to align the recipe steps to the (automatically generated) speech transcript. We then refine this alignment using a state-of-the-art visual food detector, based on a deep convolutional neural network. We show that our technique outperforms simpler techniques based on keyword spotting. It also enables interesting applications, such as automatically illustrating recipes with keyframes, and searching within a video for events of interest.