Do you want to publish a course? Click here

Video Corpus Moment Retrieval with Contrastive Learning

87   0   0.0 ( 0 )
 Added by Hao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Given a collection of untrimmed and unsegmented videos, video corpus moment retrieval (VCMR) is to retrieve a temporal moment (i.e., a fraction of a video) that semantically corresponds to a given text query. As video and text are from two distinct feature spaces, there are two general approaches to address VCMR: (i) to separately encode each modality representations, then align the two modality representations for query processing, and (ii) to adopt fine-grained cross-modal interaction to learn multi-modal representations for query processing. While the second approach often leads to better retrieval accuracy, the first approach is far more efficient. In this paper, we propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR. We adopt the first approach and introduce two contrastive learning objectives to refine video encoder and text encoder to learn video and text representations separately but with better alignment for VCMR. The video contrastive learning (VideoCL) is to maximize mutual information between query and candidate video at video-level. The frame contrastive learning (FrameCL) aims to highlight the moment region corresponds to the query at frame-level, within a video. Experimental results show that, although ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.



rate research

Read More

Despite the achievements of large-scale multimodal pre-training approaches, cross-modal retrieval, e.g., image-text retrieval, remains a challenging task. To bridge the semantic gap between the two modalities, previous studies mainly focus on word-region alignment at the object level, lacking the matching between the linguistic relation among the words and the visual relation among the regions. The neglect of such relation consistency impairs the contextualized representation of image-text pairs and hinders the model performance and the interpretability. In this paper, we first propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations. In response, we present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions from the two modalities mutually via inter-modal alignment. The IAIS regularizer boosts the performance of prevailing models on Flickr30k and MS COCO datasets by a considerable margin, which demonstrates the superiority of our approach.
82 - Xun Yang , Fuli Feng , Wei Ji 2021
We tackle the task of video moment retrieval (VMR), which aims to localize a specific moment in a video according to a textual query. Existing methods primarily model the matching relationship between query and moment by complex cross-modal interactions. Despite their effectiveness, current models mostly exploit dataset biases while ignoring the video content, thus leading to poor generalizability. We argue that the issue is caused by the hidden confounder in VMR, {i.e., temporal location of moments}, that spuriously correlates the model input and prediction. How to design robust matching models against the temporal location biases is crucial but, as far as we know, has not been studied yet for VMR. To fill the research gap, we propose a causality-inspired VMR framework that builds structural causal model to capture the true effect of query and video content on the prediction. Specifically, we develop a Deconfounded Cross-modal Matching (DCM) method to remove the confounding effects of moment location. It first disentangles moment representation to infer the core feature of visual content, and then applies causal intervention on the disentangled multimodal input based on backdoor adjustment, which forces the model to fairly incorporate each possible location of the target into consideration. Extensive experiments clearly show that our approach can achieve significant improvement over the state-of-the-art methods in terms of both accuracy and generalization (Codes: color{blue}{url{https://github.com/Xun-Yang/Causal_Video_Moment_Retrieval}}
246 - Weixin Liang , James Zou , Zhou Yu 2020
Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth human-machine communication interface: classification labels, each of which only provides several bits of information. We propose Active Learning with Contrastive Explanations (ALICE), an expert-in-the-loop training framework that utilizes contrastive natural language explanations to improve data efficiency in learning. ALICE learns to first use active learning to select the most informative pairs of label classes to elicit contrastive natural language explanations from experts. Then it extracts knowledge from these explanations using a semantic parser. Finally, it incorporates the extracted knowledge through dynamically changing the learning models structure. We applied ALICE in two visual recognition tasks, bird species classification and social relationship classification. We found by incorporating contrastive explanations, our models outperform baseline models that are trained with 40-100% more training data. We found that adding 1 explanation leads to similar performance gain as adding 13-30 labeled training data points.
This paper proposes a self-supervised learning approach for video features that results in significantly improved performance on downstream tasks (such as video classification, captioning and segmentation) compared to existing methods. Our method extends the BERT model for text sequences to the case of sequences of real-valued feature vectors, by replacing the softmax loss with noise contrastive estimation (NCE). We also show how to learn representations from sequences of visual features and sequences of words derived from ASR (automatic speech recognition), and show that such cross-modal training (when possible) helps even more.
141 - Yang Liu , Keze Wang , Haoyuan Lan 2021
Attempt to fully discover the temporal diversity and chronological characteristics for self-supervised video representation learning, this work takes advantage of the temporal dependencies within videos and further proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL). In contrast to the existing methods that ignore modeling elaborate temporal dependencies, our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning. To model multi-scale temporal dependencies, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet temporal contrastive graphs. By randomly removing edges and masking nodes of the intra-snippet graphs or inter-snippet graphs, our TCGL can generate different correlated graph views. Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different views. To adaptively learn the global context representation and recalibrate the channel-wise features, we introduce an adaptive video snippet order prediction module, which leverages the relational knowledge among video snippets to predict the actual snippet orders. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا