No Arabic abstract
Eccentricity has emerged as a potentially useful tool for helping to identify the origin of black hole mergers. However, owing to the large number of harmonics required to compute the amplitude of an eccentric signal, eccentric templates can be computationally very expensive, making statistical analyses to distinguish distributions from different formation channels very challenging. In this paper, we outline a method for estimating the signal-to-noise ratio for inspiraling binaries at lower frequencies such as those proposed for LISA and DECIGO. Our approximation can be useful more generally for any quasi-periodic sources. We argue that surprisingly, the signal-to-noise ratio evaluated at or near the peak frequency (of the power) is well approximated by using a constant noise curve, even if in reality the noise strain has power law dependence. We furthermore improve this initial estimate over our previous calculation to allow for frequency-dependence in the noise to expand the range of eccentricity and frequency over which our approximation applies. We show how to apply this method to get an answer accurate to within a factor of two over almost the entire projected observable frequency range. We emphasize this method is not a replacement for detailed signal processing. The utility lies chiefly in identifying theoretically useful discriminators among different populations and providing fairly accurate estimates for how well they should work. This approximation can furthermore be useful for narrowing down parameter ranges in a computationally economical way when events are observed. We furthermore show a distinctive way to identify events with extremely high eccentricity where the signal is enhanced relative to naive expectations on the high frequency end.
Computing signal-to-noise ratios (SNRs) is one of the most common tasks in gravitational-wave data analysis. While a single SNR evaluation is generally fast, computing SNRs for an entire population of merger events could be time consuming. We compute SNRs for aligned-spin binary black-hole mergers as a function of the (detector-frame) total mass, mass ratio and spin magnitudes using selected waveform models and detector noise curves, then we interpolate the SNRs in this four-dimensional parameter space with a simple neural network (a multilayer perceptron). The trained network can evaluate $10^6$ SNRs on a 4-core CPU within a minute with a median fractional error below $10^{-3}$. This corresponds to average speed-ups by factors in the range $[120,,7.5times10^4]$, depending on the underlying waveform model. Our trained network (and source code) is publicly available at https://github.com/kazewong/NeuralSNR, and it can be easily adapted to similar multidimensional interpolation problems.
We discuss the observable effects of enhanced black-hole mass loss in a black hole--neutron star (BH--NS) binary, due to the presence of a warped extra spatial dimension of curvature radius $L$ in the braneworld scenario. For some masses and orbital parameters in the expected ranges the binary components would outspiral, the opposite of the behavior due to energy loss from gravitational radiation alone. If the NS is a pulsar, observations of the rate of change of the orbital period with a precision obtained for the Binary Pulsar B1913+16 could easily detect the effect of mass loss. For $M_{BH}=7M_odot$, $M_{NS}=1.4M_odot$, eccentricity $e=0.1$, and $L=10mu$m, the critical orbital period dividing systems which inspiral from systems which outspiral is P$approx$6.5 hours, which is within the range of expected orbital periods; this value drops to P$approx$4.2 hours for $M_{BH}=5M_odot$. Observations of a BH--pulsar system could set considerably better limits on $L$ in these braneworld models than could be determined by torsion-balance gravity experiments in the foreseeable future.
The eccentricity of binary black hole mergers is predicted to be an indicator of the history of their formation. In particular, eccentricity is a strong signature of dynamical formation rather than formation by stellar evolution in isolated stellar systems. It has been shown that searches for eccentric signals with quasi-circular templates can lead to loss of SNR, and some signals could be missed by such a pipeline. We investigate the efficacy of the existing quasi-circular parameter estimation pipelines to determine the source parameters of such eccentric systems. We create a set of simulated signals with eccentricity up to 0.3 and find that as the eccentricity increases, the recovered mass parameters are consistent with those of a binary with up to a $approx 10%$ higher chirp mass and mass ratio closer to unity. We also employ a full inspiral-merger-ringdown waveform model to perform parameter estimation on two gravitational wave events, GW151226 and GW170608, to investigate this bias on real data. We find that the correlation between the masses and eccentricity persists in real data, but that there is also a correlation between the measured eccentricity and effective spin. In particular, using a non-spinning prior results in a spurious eccentricity measurement for GW151226. Performing parameter estimation with an aligned spin, eccentric model, we constrain the eccentricities of GW151226 and GW170608 to be $<0.15$ and $<0.12$ respectively.
We derive analytic expressions that provide Fourier domain gravitational wave (GW) response function for compact binaries inspiraling along moderately eccentric orbits. These expressions include amplitude corrections to the two GW polarization states that are accurate to the first post-Newtonian (PN) order. Additionally, our fully 3PN accurate GW phase evolution incorporates eccentricity effects up to sixth order at each PN order. Further, we develop a prescription to incorporate analytically the effects of 3PN accurate periastron advance in the GW phase evolution. This is how we provide a ready-to-use and efficient inspiral template family for compact binaries in moderately eccentric orbits. Preliminary GW data analysis explorations suggest that our template family should be required to construct analytic inspiral-merger-ringdown templates to model moderately eccentric compact binary coalescence.
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) 22-day orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 $M_odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with $0.027 < e < 0.44$; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are a) initial evolution of the pulsar in a triple system which became dynamically unstable, b) origin in an exchange encounter in an environment with high stellar density, c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar white dwarf, and d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.