Do you want to publish a course? Click here

A Precision Test for an Extra Spatial Dimension Using Black Hole--Pulsar Binaries

107   0   0.0 ( 0 )
 Added by Michael Kavic
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the observable effects of enhanced black-hole mass loss in a black hole--neutron star (BH--NS) binary, due to the presence of a warped extra spatial dimension of curvature radius $L$ in the braneworld scenario. For some masses and orbital parameters in the expected ranges the binary components would outspiral, the opposite of the behavior due to energy loss from gravitational radiation alone. If the NS is a pulsar, observations of the rate of change of the orbital period with a precision obtained for the Binary Pulsar B1913+16 could easily detect the effect of mass loss. For $M_{BH}=7M_odot$, $M_{NS}=1.4M_odot$, eccentricity $e=0.1$, and $L=10mu$m, the critical orbital period dividing systems which inspiral from systems which outspiral is P$approx$6.5 hours, which is within the range of expected orbital periods; this value drops to P$approx$4.2 hours for $M_{BH}=5M_odot$. Observations of a BH--pulsar system could set considerably better limits on $L$ in these braneworld models than could be determined by torsion-balance gravity experiments in the foreseeable future.



rate research

Read More

Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.
A rotating black hole causes the spin-axis of a nearby pulsar to precess due to geodetic and gravitomagnetic frame-dragging effects. The aim of our theoretical work here is to explore how this spin-precession can modify the rate at which pulses are received on earth. Towards this end, we obtain the complete evolution of the beam vectors of pulsars moving on equatorial circular orbits in the Kerr spacetime, relative to asymptotic fixed observers. We proceed to establish that such spin-precession effects can significantly modify observed pulse frequencies and, in specific, we find that the observed pulse frequency rises sharply as the orbit shrinks, potentially providing a new way to locate horizons of Kerr black holes, even if observed for a very short time period. We also discuss implications for detections of sub-millisecond pulsars, pulsar nulling, quasi-periodic oscillations, multiply-peaked pulsar Fourier profiles and how Kerr black holes can potentially be distinguished from naked singularities.
An evaporating black hole in the presence of an extra spatial dimension would undergo an explosive phase of evaporation. We show that such an event, involving a primordial black hole, can produce a detectable, distinguishable electromagnetic pulse, signaling the existence of an extra dimension of size $Lsim10^{-18}-10^{-20}$ m. We derive a generic relationship between the Lorentz factor of a pulse-producing fireball and the TeV energy scale. For an ordinary toroidally compactified extra dimension, transient radio-pulse searches probe the electroweak energy scale ($sim$0.1 TeV), enabling comparison with the Large Hadron Collider.
In this paper we propose the model that the coalescence of primordial black holes (PBHs) binaries with equal mass $M sim 10^{28}$g can emit luminous gigahertz (GHz) radio transient, which may be candidate sources for the observed fast radio bursts (FRBs), if at least one black hole holds appropriate amount of net electric charge $Q$. Using a dimensionless quantity for the charge $q = Q/sqrt{G}M$, our analyses infer that $qsim O(10^{-4.5})$ can explain the FRBs with released energy of order $O(10^{40}) {rm ergs}$. With the current sample of FRBs and assuming a distribution of charge $phi(q)$ for all PBHs, we can deduce that its form is proportional to $q^{-3.0pm0.1}$ for $qgeq 7.2times10^{-5}$ if PBHs are sources of the observed FRBs. Furthermore, with the proposed hypothetical scenario and by estimating the local event rate of FRBs $sim 2.6 times 10^3 {rm Gpc}^{-3} {rm yr}^{-1}$, one derives a lower bound for the fraction of PBHs (at the mass of $10^{28}$g) against that of matter $f_{rm PBH}(10^{28}{rm g})$ $gtrsim 10^{-5}$ needed to explain the rate. With this inspiring estimate, we expect that future observations of FRBs can help to falsify their physical origins from the PBH binaries coalescences. In the future, the gravitational waves produced by mergers of small black holes can be detected by high frequency gravitational wave detectors. We believe that this work would be a useful addition to the current literature on multimessenger astronomy and cosmology.
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in a hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا