No Arabic abstract
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) 22-day orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 $M_odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with $0.027 < e < 0.44$; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are a) initial evolution of the pulsar in a triple system which became dynamically unstable, b) origin in an exchange encounter in an environment with high stellar density, c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar white dwarf, and d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.
We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 solar masses by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2-sigma upper limit e < 1.7e-3. The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 solar masses, assuming a pulsar mass of 1.4 solar masses. Most likely, this pulsar belongs to the rare class of intermediate mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.
We report here the Einstein@Home discovery of PSR J1913+1102, a 27.3-ms pulsar found in data from the ongoing Arecibo PALFA pulsar survey. The pulsar is in a 4.95-hr double neutron star (DNS) system with an eccentricity of 0.089. From radio timing with the Arecibo 305-m telescope, we measure the rate of advance of periastron to be 5.632(18) deg/yr. Assuming general relativity accurately models the orbital motion, this corresponds to a total system mass of 2.875(14) solar masses, similar to the mass of the most massive DNS known to date, B1913+16, but with a much smaller eccentricity. The small eccentricity indicates that the second-formed neutron star (the companion of PSR J1913+1102) was born in a supernova with a very small associated kick and mass loss. In that case this companion is likely, by analogy with other systems, to be a light (1.2 solar mass) neutron star; the system would then be highly asymmetric. A search for radio pulsations from the companion yielded no plausible detections, so we cant yet confirm this mass asymmetry. By the end of 2016, timing observations should permit the detection of two additional post-Keplerian parameters: the Einstein delay, which will enable precise mass measurements and a verification of the possible mass asymmetry of the system, and the orbital decay due to the emission of gravitational waves, which will allow another test of the radiative properties of gravity. The latter effect will cause the system to coalesce in ~0.5 Gyr.
We present results from long-term timing of 72 pulsars discovered by the Arecibo PALFA survey, including precise determination of astrometric and spin parameters, and flux density and scatter broadening measurements at 1.4 GHz. Notable discoveries include two young pulsars (characteristic ages $sim$30 kyr) with no apparent supernova remnant associations, three mode changing, 13 nulling and two intermittent pulsars. We detected eight glitches in five pulsars. Among them is PSR~J1939+2609, an apparently old pulsar (characteristic age $sim$1 Gy), and PSR~J1954+2529, which likely belongs to a newly-emerging class of binary pulsars. The latter is the only pulsar among the 72 that appears to be not isolated: a non-recycled neutron star with a 931 ms spin period in an eccentric ($e,=,0.114$) wide ($P_b,=,82.7$ d) orbit with a companion of undetermined nature having a minimum mass of $0.61 M_{odot}$. Since operations at Arecibo ceased in 2020 August, we give a final tally of PALFA sky coverage, and compare its 207 pulsar discoveries to the known population. On average, they are 50% more distant than other Galactic plane radio pulsars; PALFA millisecond pulsars (MSP) have twice the dispersion measure per unit spin period than the known population of MSP in the Plane. The four intermittent pulsars discovered by PALFA more than double the population of such objects, which should help to improve our understanding of pulsar magnetosphere physics. The statistics for these, RRATS, and nulling pulsars suggest that there are many more of these objects in the Galaxy than was previously thought.
Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.
We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observation, we have identified an X-ray and optical counterpart of 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 min in optical and possibly also in X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 min. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black widow/redback type gamma-ray millisecond pulsar (MSP). The optical and X-ray lightcurve profiles show that the companion is mildly heated by the high-energy emission and the X-rays are from intrabinary shock. Although no radio pulsation has been detected yet, we estimated that the spin period of the MSP is ~2ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.