Do you want to publish a course? Click here

Real-Time Feedback Control of Charge Sensing for Quantum Dot Qubits

193   0   0.0 ( 0 )
 Added by Takashi Nakajima
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurement of charge configurations in few-electron quantum dots is a vital technique for spin-based quantum information processing. While fast and high-fidelity measurement is possible by using proximal quantum dot charge sensors, their operating range is limited and prone to electrical disturbances. Here we demonstrate realtime operation of a charge sensor in a feedback loop to maintain its sensitivity suitable for fast charge sensing in a Si/SiGe double quantum dot. Disturbances to the charge sensitivity, due to variation of gate voltages for operating the quantum dot and $1/f$ charge fluctuation, are compensated by a digital PID controller with the bandwidth of $approx 100,{rm kHz}$. The rapid automated tuning of a charge sensor enables unobstructed charge stability diagram measurement facilitating realtime quantum dot tuning and submicrosecond single-shot spin readout without compromising the performance of a charge sensor in time-consuming experiments for quantum information processing.



rate research

Read More

95 - R. Li , L. Petit , D.P. Franke 2017
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. In order to increase the number of qubits to the thousands or millions of qubits needed for practical quantum information we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for non-planar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Qubit addressability and readout are enabled by self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.
We report individual confinement and two-axis qubit operations of two electron spin qubits in GaAs gate-defined sextuple quantum dot array with integrated micro-magnet. As a first step toward multiple qubit operations, we demonstrate coherent manipulations of three singlet-triplet qubits showing underdamped Larmor and Ramsey oscillations in all double dot sites. We provide an accurate measure of site site-dependent field gradients and rms electric and magnetic noise, and we discuss the adequacy of simple rectangular micro-magnet for practical use in multiple quantum dot arrays. We also discuss current limitations and possible strategies for realizing simultaneous multi multi-qubit operations in extended linear arrays.
134 - Clive Emary , John Gough 2014
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.
Triple quantum dots (TQDs) are promising semiconductor spin qubits because of their all-electrical control via fast, tunable exchange interactions and immunity to global magnetic fluctuations. These qubits can experience strong transverse interaction with photons in the resonant exchange (RX) regime, when exchange is simultaneously active on both qubit axes. However, most theoretical work has been based on phenomenological Fermi-Hubbard models, which may not fully capture the complexity of the qubit spin-charge states in this regime. Here we investigate exchange in Si/SiGe and GaAs TQDs using full configuration interaction (FCI) calculations which better describe practical device operation. We show that high exchange operation in general, and the RX regime in particular, can differ significantly from simple models, presenting new challenges and opportunities for spin-photon coupling. We highlight the impact of device electrostatics and effective mass on exchange and identify a new operating point (XRX) where strong spin-photon coupling is most likely to occur in Si/SiGe TQDs. Based on our numerical results, we analyze the feasibility of a remote entanglement cavity iSWAP protocol and discuss design pathways for improving fidelity. Our analysis provides insight into the requirements for TQD spin-photon transduction and demonstrates more generally the necessity of accurate modeling of exchange in spin qubits.
We investigate capacitively coupled two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin $S$ and its projection $S_z$ are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has dramatic effect on performance of two-qubit gates. By varying the level splittings of individual qubits, $J_a$ and $J_b$, and the interqubit coupling time $t$, we can find an infinite number of triples $(J_a, J_b, t)$ for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact CNOT gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا