Do you want to publish a course? Click here

Exact CNOT Gates with a Single Nonlocal Rotation for Quantum-Dot Qubits

128   0   0.0 ( 0 )
 Added by Arijeet Pal
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate capacitively coupled two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin $S$ and its projection $S_z$ are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has dramatic effect on performance of two-qubit gates. By varying the level splittings of individual qubits, $J_a$ and $J_b$, and the interqubit coupling time $t$, we can find an infinite number of triples $(J_a, J_b, t)$ for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact CNOT gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.



rate research

Read More

Any single-qubit unitary operation or quantum gate can be considered a rotation. Typical experimental implementations of single-qubit gates involve two or three fixed rotation axes, and up to three rotation steps. Here we show that, if the rotation axes can be tuned arbitrarily in a fixed plane, then two rotation steps are sufficient for implementing a single-qubit gate, and one rotation step is sufficient for implementing a state transformation. The results are relevant for exchange-only logical qubits encoded in three-spin blocks, which are important for universal quantum computation in decoherence free subsystems and subspaces.
95 - R. Li , L. Petit , D.P. Franke 2017
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. In order to increase the number of qubits to the thousands or millions of qubits needed for practical quantum information we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for non-planar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Qubit addressability and readout are enabled by self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the photonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
We propose a fast, scalable all-optical design for arbitrary two-qubit operations for defect qubits in diamond (NV centers) and in silicon carbide, which are promising candidates for room temperature quantum computing. The interaction between qubits is carried out by microcavity photons. The approach uses constructive interference from higher energy excited states activated by optical control. In this approach the cavity mode remains off-resonance with the directly accessible optical transitions used for initialization and readout. All quantum operations are controlled by near-resonant narrow-bandwidth optical pulses. We perform full quantum numerical modeling of the proposed gates and show that high-fidelity operations can be obtained with realistic parameters.
We demonstrate single qubit operations on a trapped atom hyperfine qubit using a single ultrafast pulse from a mode-locked laser. We shape the pulse from the laser and perform a pi rotation of the qubit in less than 50 ps with a population transfer exceeding 99% and negligible effects from spontaneous emission or ac Stark shifts. The gate time is significantly shorter than the period of atomic motion in the trap (Rabi frequency / trap frequency > 10000), demonstrating that this interaction takes place deep within the strong excitation regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا