No Arabic abstract
As a revolutionary paradigm for controlling wireless channels, reconfigurable intelligent surfaces (RISs) have emerged as a candidate technology for future 6G networks. However, due to the multiplicative fading effect, RISs only achieve a negligible capacity gain in many scenarios with strong direct links. In this paper, the concept of active RISs is proposed to overcome this fundamental limitation. Unlike the existing passive RISs that reflect signals without amplification, active RISs can amplify the reflected signals. We develop a signal model for active RISs, which is validated through experimental measurements. Based on this model, we formulate the sum-rate maximization problem for active RIS aided multiple-input multiple-output (MIMO) systems and a precoding algorithm is proposed to solve this problem. Results show that, in a typical wireless system, the existing passive RISs can realize only a negligible sum-rate gain of 3%, while the proposed active RISs can achieve a significant sum-rate gain of 108%, thus overcoming the multiplicative fading effect.
Reconfigurable intelligent surfaces (RISs) are able to provide passive beamforming gain via low-cost reflecting elements and hence improve wireless link quality. This work considers two-way passive beamforming design in RIS-aided frequency division duplexing (FDD) systems where the RIS reflection coefficients are the same for downlink and uplink and should be optimized for both directions simultaneously. We formulate a joint optimization of the transmit/receive beamformers at the base station (BS) and the RIS reflection coefficients. The objective is to maximize the weighted sum of the downlink and uplink rates, where the weighting parameter is adjustable to obtain different achievable downlink-uplink rate pairs. We develop an efficient manifold optimization algorithm to obtain a stationary solution. For comparison, we also introduce two heuristic designs based on one-way optimization, namely, time-sharing and phase-averaging. Simulation results show that the proposed manifold-based two-way optimization design significantly enlarges the achievable downlink-uplink rate region compared with the two heuristic designs. It is also shown that phase-averaging is superior to time-sharing when the number of RIS elements is large.
This paper investigates the problem of joint massive devices separation and channel estimation for a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme in the sixth-generation (6G) wireless networks. In particular, by associating the data sequences to a rank-one tensor and exploiting the angular sparsity of the channel, the detection problem is cast as a high-order coupled tensor decomposition problem. However, the coupling among multiple devices to RIS (device-RIS) channels together with their sparse structure make the problem intractable. By devising novel priors to incorporate problem structures, we design a novel probabilistic model to capture both the element-wise sparsity from the angular channel model and the low rank property due to the sporadic nature of URA. Based on the this probabilistic model, we develop a coupled tensor-based automatic detection (CTAD) algorithm under the framework of variational inference with fast convergence and low computational complexity. Moreover, the proposed algorithm can automatically learn the number of active devices and thus effectively avoid noise overfitting. Extensive simulation results confirm the effectiveness and improvements of the proposed URA algorithm in large-scale RIS regime.
Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.
This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between NOMA and RIS. Depending on whether the RIS reflection coefficients can be adjusted only once or multiple times during one transmission, we distinguish between static and dynamic RIS configurations. In particular, the capacity region of RIS aided single-antenna NOMA networks is characterized and compared with the OMA rate region from an information-theoretic perspective, revealing that the dynamic RIS configuration is capacity-achieving. Then, the impact of the RIS deployment location on the performance of different multiple access schemes is investigated, which reveals that asymmetric and symmetric deployment strategies are preferable for NOMA and OMA, respectively. Furthermore, for RIS aided multiple-antenna NOMA networks, three novel joint active and passive beamformer designs are proposed based on both beamformer based and cluster based strategies. Finally, open research problems for RIS-NOMA networks are highlighted.
This paper integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) into a unified framework using one simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). The STAR-RIS plays an important role in adjusting the decoding order of hybrid users for efficient interference mitigation and omni-directional coverage extension. To capture the impact of non-ideal wireless channels on AirFL, a closed-form expression for the optimality gap (a.k.a. convergence upper bound) between the actual loss and the optimal loss is derived. This analysis reveals that the learning performance is significantly affected by active and passive beamforming schemes as well as wireless noise. Furthermore, when the learning rate diminishes as the training proceeds, the optimality gap is explicitly characterized to converge with a linear rate. To accelerate convergence while satisfying QoS requirements, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and the configuration mode of STAR-RIS. Next, a trust region-based successive convex approximation method and a penalty-based semidefinite relaxation approach are proposed to handle the decoupled non-convex subproblems iteratively. An alternating optimization algorithm is then developed to find a suboptimal solution for the original MINLP problem. Extensive simulation results show that i) the proposed framework can efficiently support NOMA and AirFL users via concurrent uplink communications, ii) our algorithms can achieve a faster convergence rate on IID and non-IID settings compared to existing baselines, and iii) both the spectrum efficiency and learning performance can be significantly improved with the aid of the well-tuned STAR-RIS.