No Arabic abstract
This paper investigates the problem of joint massive devices separation and channel estimation for a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme in the sixth-generation (6G) wireless networks. In particular, by associating the data sequences to a rank-one tensor and exploiting the angular sparsity of the channel, the detection problem is cast as a high-order coupled tensor decomposition problem. However, the coupling among multiple devices to RIS (device-RIS) channels together with their sparse structure make the problem intractable. By devising novel priors to incorporate problem structures, we design a novel probabilistic model to capture both the element-wise sparsity from the angular channel model and the low rank property due to the sporadic nature of URA. Based on the this probabilistic model, we develop a coupled tensor-based automatic detection (CTAD) algorithm under the framework of variational inference with fast convergence and low computational complexity. Moreover, the proposed algorithm can automatically learn the number of active devices and thus effectively avoid noise overfitting. Extensive simulation results confirm the effectiveness and improvements of the proposed URA algorithm in large-scale RIS regime.
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix $A$ and a recovery algorithm, such that the sparse binary vector $mathbf{x}$ can be recovered reliably from the measurements $mathbf{y}=Amathbf{x}+sigmamathbf{z}$, where $mathbf{z}$ is additive white Gaussian noise. We propose to design $A$ as a parity check matrix of a low-density parity-check code (LDPC), and to recover $mathbf{x}$ from the measurements $mathbf{y}$ using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of $A$. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.
In this paper, a sparse Kronecker-product (SKP) coding scheme is proposed for unsourced multiple access. Specifically, the data of each active user is encoded as the Kronecker product of two component codewords with one being sparse and the other being forward-error-correction (FEC) coded. At the receiver, an iterative decoding algorithm is developed, consisting of matrix factorization for the decomposition of the Kronecker product and soft-in soft-out decoding for the component sparse code and the FEC code. The cyclic redundancy check (CRC) aided interference cancellation technique is further incorporated for performance improvement. Numerical results show that the proposed scheme outperforms the state-of-the-art counterparts, and approaches the random coding bound within a gap of only 0.1 dB at the code length of 30000 when the number of active users is less than 75, and the error rate can be made very small even if the number of active users is relatively large.
This paper investigates the issue of cooperative activity detection for grant-free random access in the sixth-generation (6G) cell-free wireless networks with sourced and unsourced paradigms. First, we propose a cooperative framework for solving the problem of device activity detection in sourced random access. In particular, multiple access points (APs) cooperatively detect the device activity via exchanging low-dimensional intermediate information with their neighbors. This is enabled by the proposed covariance-based algorithm via exploiting both the sparsity-promoting and similarity-promoting terms of the device state vectors among neighboring APs. A decentralized approximate separating approach is introduced based on the forward-backward splitting strategy for addressing the formulated problem. Then, the proposed activity detection algorithm is adopted as a decoder of cooperative unsourced random access, where the multiple APs cooperatively detect the list of transmitted messages regardless of the identity of the transmitting devices. Finally, we provide sufficient conditions on the step sizes that ensure the convergence of the proposed algorithm in the sense of Bregman divergence. Simulation results show that the proposed algorithm is efficient for addressing both sourced and unsourced massive random access problems, while requires a shorter signature sequence and accommodates a significantly larger number of active devices with a reasonable antenna array size, compared with the state-of-art algorithms.
A new family of operators, coined hierarchical measurement operators, is introduced and discussed within the well-known hierarchical sparse recovery framework. Such operator is a composition of block and mixing operations and notably contains the Kronecker product as a special case. Results on their hierarchical restricted isometry property (HiRIP) are derived, generalizing prior work on recovery of hierarchically sparse signals from Kronecker-structured linear measurements. Specifically, these results show that, very surprisingly, sparsity properties of the block and mixing part can be traded against each other. The measurement structure is well-motivated by a massive random access channel design in communication engineering. Numerical evaluation of user detection rates demonstrate the huge benefit of the theoretical framework.
A high success rate of grant-free random access scheme is proposed to support massive access for machine-to-machine communications in massive multipleinput multiple-output systems. This scheme allows active user equipments (UEs) to transmit their modulated uplink messages along with super pilots consisting of multiple sub-pilots to a base station (BS). Then, the BS performs channel state information (CSI) estimation and uplink message decoding by utilizing a proposed graph combined clustering independent component analysis (GCICA) decoding algorithm, and then employs the estimated CSIs to detect active UEs by utilizing the characteristic of asymptotic favorable propagation of massive MIMO channel. We call this proposed scheme as GCICA based random access (GCICA-RA) scheme. We analyze the successful access probability, missed detection probability, and uplink throughput of the GCICA-RA scheme. Numerical results show that, the GCICA-RA scheme significantly improves the successful access probability and uplink throughput, decreases missed detection probability, and provides low CSI estimation error at the same time.