Do you want to publish a course? Click here

MmWave MIMO Communication with Semi-Passive RIS: A Low-Complexity Channel Estimation Scheme

137   0   0.0 ( 0 )
 Added by Jiangfeng Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.



rate research

Read More

A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.
433 - Xu Shi , Jintao Wang , Guozhi Chen 2021
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amount of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receive beamforming with reduced complexity multi-tap analog Self-Interference (SI) cancellation, we propose a novel transmission scheme exploiting channel reciprocity for joint downlink beamformed information data communication and uplink channel estimation through training data transmission. We adopt a general model for pilot-assisted channel estimation and present a unified optimization framework for all involved FD MIMO design parameters. Our representative Monte Carlo simulation results for an example algorithmic solution for the beamformers as well as for the analog and digital SI cancellation demonstrate that the proposed FD-based joint communication and control scheme provides 1.4x the downlink rate of its half duplex counterpart. This performance improvement is achieved with 50% reduction in the hardware complexity for the analog canceller than conventional FD MIMO architectures with fully connected analog cancellation.
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا