Do you want to publish a course? Click here

Reconfigurable Intelligent Surface (RIS) Aided Multi-User Networks: Interplay Between NOMA and RIS

135   0   0.0 ( 0 )
 Added by Xidong Mu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between NOMA and RIS. Depending on whether the RIS reflection coefficients can be adjusted only once or multiple times during one transmission, we distinguish between static and dynamic RIS configurations. In particular, the capacity region of RIS aided single-antenna NOMA networks is characterized and compared with the OMA rate region from an information-theoretic perspective, revealing that the dynamic RIS configuration is capacity-achieving. Then, the impact of the RIS deployment location on the performance of different multiple access schemes is investigated, which reveals that asymmetric and symmetric deployment strategies are preferable for NOMA and OMA, respectively. Furthermore, for RIS aided multiple-antenna NOMA networks, three novel joint active and passive beamformer designs are proposed based on both beamformer based and cluster based strategies. Finally, open research problems for RIS-NOMA networks are highlighted.



rate research

Read More

Reconfigurable intelligent surfaces (RISs) have emerged as a promising technique to enhance the system spectral efficiency. This letter investigates the ergodic channel capacity (ECC) of an RIS-aided multiple-input multiple-output channel under the assumption that the transmitter-RIS, RIS-receiver, and transmitter-receiver channels contain deterministic line-of-sight paths. Novel expressions are derived to characterize the upper and lower bounds of the ECC. To unveil more system insights, asymptotic analyses are performed to the system ECC in the limit of large signal-to-noise ratio (SNR) and number of reflecting elements (REs). Theoretical analyses suggest that the RISs deployment can shape the ECC curve by influencing its high-SNR power offset and the ECC can get improved by increasing the number of REs.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for future wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
Reconfigurable intelligent surface (RIS)-aided networks have been investigated for the purpose of improving the system performance. However, the introduced unit modulus phase shifts and coupling characteristic bring enormous challenges to the optimization in the RIS-aided networks. Many efforts have been made to jointly optimize phase shift vector and other parameters. This article intends to survey the latest research results about the optimization in RIS-aided networks. A taxonomy is devised to categorize the existing literatures based on optimization types, phase shift form, and decoupling methods. Furthermore, in alternating optimization framework, we introduce in detail how to exploit the aforementioned technologies flexibly. It is known that most works could not guarantee a stationary point. To overcome this problem, we propose a unified framework for the optimization problem of RIS-aided networks with continuous phase shifts to find a stationary point. Finally, key challenges are outlined to provide guidelines for the domain researchers and designers to explore more efficient optimization frameworks, and then open issues are discussed.
This paper investigates the problem of model aggregation in federated learning systems aided by multiple reconfigurable intelligent surfaces (RISs). The effective integration of computation and communication is achieved by over-the-air computation (AirComp). Since all local parameters are transmitted over shared wireless channels, the undesirable propagation error inevitably deteriorates the performance of global aggregation. The objective of this work is to 1) reduce the signal distortion of AirComp; 2) enhance the convergence rate of federated learning. Thus, the mean-square-error and the device set are optimized by designing the transmit power, controlling the receive scalar, tuning the phase shifts, and selecting participants in the model uploading process. The formulated mixed-integer non-linear problem (P0) is decomposed into a non-convex problem (P1) with continuous variables and a combinatorial problem (P2) with integer variables. To solve subproblem (P1), the closed-form expressions for transceivers are first derived, then the multi-antenna cases are addressed by the semidefinite relaxation. Next, the problem of phase shifts design is tackled by invoking the penalty-based successive convex approximation method. In terms of subproblem (P2), the difference-of-convex programming is adopted to optimize the device set for convergence acceleration, while satisfying the aggregation error demand. After that, an alternating optimization algorithm is proposed to find a suboptimal solution for problem (P0). Finally, simulation results demonstrate that i) the designed algorithm can converge faster and aggregate model more accurately compared to baselines; ii) the training loss and prediction accuracy of federated learning can be improved significantly with the aid of multiple RISs.
109 - Xidong Mu , Yuanwei Liu , Li Guo 2021
Intelligent reflecting surface (IRS) enhanced multi-unmanned aerial vehicle (UAV) non-orthogonal multiple access (NOMA) networks are investigated. A new transmission framework is proposed, where multiple UAV-mounted base stations employ NOMA to serve multiple groups of ground users with the aid of an IRS. The three-dimensional (3D) placement and transmit power of UAVs, the reflection matrix of the IRS, and the NOMA decoding orders among users are jointly optimized for maximization of the sum rate of considered networks. To tackle the formulated mixed-integer non-convex optimization problem with coupled variables, a block coordinate descent (BCD)-based iterative algorithm is developed. Specifically, the original problem is decomposed into three subproblems, which are alternatingly solved by exploiting the penalty method and the successive convex approximation technique. The proposed BCD-based algorithm is demonstrated to be able to obtain a stationary point of the original problem with polynomial time complexity. Numerical results show that: 1) the proposed NOMA-IRS scheme for multi-UAV networks achieves a higher sum rate compared to the benchmark schemes, i.e., orthogonal multiple access (OMA)-IRS and NOMA without IRS; 2) the use of IRS is capable of providing performance gain for multi-UAV networks by both enhancing channel qualities of UAVs to their served users and mitigating the inter-UAV interference; and 3) optimizing the UAV placement can make the sum rate gain brought by NOMA more distinct due to the flexible decoding order design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا