No Arabic abstract
We propose a technique to compute spectrograms using Frequency Domain Linear Prediction (FDLP) that uses all-pole models to fit the squared Hilbert envelope of speech in different frequency sub-bands. The spectrogram of a complete speech utterance is computed by overlap-add of contiguous all-pole model responses. A long context window of 1.5 seconds allows us to capture the low frequency temporal modulations of speech in the spectrogram. For an end-to-end automatic speech recognition task, the FDLP spectrogram performs on par with the standard mel spectrogram features for clean read speech training and test data. For more realistic speech data with train-test domain mismatches or reverberations, FDLP spectrogram shows up to 25% and 22% relative WER improvements over mel spectrogram respectively.
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compared to a conventional ASR model. To address this issue, we look at encouraging the E2E model to emit words early, through an algorithm called FastEmit [3]. Naturally, improving on latency results in a quality degradation. To address this, we explore replacing the LSTM layers in the encoder of our E2E model with Conformer layers [4], which has shown good improvements for ASR. Secondly, we also explore running a 2nd-pass beam search to improve quality. In order to ensure the 2nd-pass completes quickly, we explore non-causal Conformer layers that feed into the same 1st-pass RNN-T decoder, an algorithm called Cascaded Encoders [5]. Overall, we find that the Conformer RNN-T with Cascaded Encoders offers a better quality and latency tradeoff for streaming ASR.
Joint optimization of multi-channel front-end and automatic speech recognition (ASR) has attracted much interest. While promising results have been reported for various tasks, past studies on its meeting transcription application were limited to small scale experiments. It is still unclear whether such a joint framework can be beneficial for a more practical setup where a massive amount of single channel training data can be leveraged for building a strong ASR back-end. In this work, we present our investigation on the joint modeling of a mask-based beamformer and Attention-Encoder-Decoder-based ASR in the setting where we have 75k hours of single-channel data and a relatively small amount of real multi-channel data for model training. We explore effective training procedures, including a comparison of simulated and real multi-channel training data. To guide the recognition towards a target speaker and deal with overlapped speech, we also explore various combinations of bias information, such as direction of arrivals and speaker profiles. We propose an effective location bias integration method called deep concatenation for the beamformer network. In our evaluation on various meeting recordings, we show that the proposed framework achieves a substantial word error rate reduction.
Today, many state-of-the-art automatic speech recognition (ASR) systems apply all-neural models that map audio to word sequences trained end-to-end along one global optimisation criterion in a fully data driven fashion. These models allow high precision ASR for domains and words represented in the training material but have difficulties recognising words that are rarely or not at all represented during training, i.e. trending words and new named entities. In this paper, we use a text-to-speech (TTS) engine to provide synthetic audio for out-of-vocabulary (OOV) words. We aim to boost the recognition accuracy of a recurrent neural network transducer (RNN-T) on OOV words by using the extra audio-text pairs, while maintaining the performance on the non-OOV words. Different regularisation techniques are explored and the best performance is achieved by fine-tuning the RNN-T on both original training data and extra synthetic data with elastic weight consolidation (EWC) applied on the encoder. This yields a 57% relative word error rate (WER) reduction on utterances containing OOV words without any degradation on the whole test set.
Transcription bottlenecks, created by a shortage of effective human transcribers are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxochitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.