No Arabic abstract
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.
Recently, an end-to-end speaker-attributed automatic speech recognition (E2E SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. In the previous study, the model parameters were trained based on the speaker-attributed maximum mutual information (SA-MMI) criterion, with which the joint posterior probability for multi-talker transcription and speaker identification are maximized over training data. Although SA-MMI training showed promising results for overlapped speech consisting of various numbers of speakers, the training criterion was not directly linked to the final evaluation metric, i.e., speaker-attributed word error rate (SA-WER). In this paper, we propose a speaker-attributed minimum Bayes risk (SA-MBR) training method where the parameters are trained to directly minimize the expected SA-WER over the training data. Experiments using the LibriSpeech corpus show that the proposed SA-MBR training reduces the SA-WER by 9.0 % relative compared with the SA-MMI-trained model.
Recently, an end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. It showed promising results for simulated speech mixtures consisting of various numbers of speakers. However, the model required prior knowledge of speaker profiles to perform speaker identification, which significantly limited the application of the model. In this paper, we extend the prior work by addressing the case where no speaker profile is available. Specifically, we perform speaker counting and clustering by using the internal speaker representations of the E2E SA-ASR model to diarize the utterances of the speakers whose profiles are missing from the speaker inventory. We also propose a simple modification to the reference labels of the E2E SA-ASR training which helps handle continuous multi-talker recordings well. We conduct a comprehensive investigation of the original E2E SA-ASR and the proposed method on the monaural LibriCSS dataset. Compared to the original E2E SA-ASR with relevant speaker profiles, the proposed method achieves a close performance without any prior speaker knowledge. We also show that the source-target attention in the E2E SA-ASR model provides information about the start and end times of the hypotheses.
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be inferred on-the-fly with minimum latency. Furthermore, in voice-activated smart assistant systems, language identity is also required for downstream processing of ASR output. In this paper, we introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification (LID) using the recurrent neural network transducer (RNN-T) architecture. On the input side, embeddings from pretrained acoustic-only LID classifiers are used to guide RNN-T training and inference, while on the output side, language targets are jointly modeled with ASR targets. The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India. Experiments show that for English-Spanish, the bilingual joint ASR-LID architecture matches monolingual ASR and acoustic-only LID accuracies. For the more challenging (owing to within-utterance code switching) case of English-Hindi, English ASR and LID metrics show degradation. Overall, in scenarios where users switch dynamically between languages, the proposed architecture offers a promising simplification over running multiple monolingual ASR models and an LID classifier in parallel.
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute self-attention. We have proposed a block processing method for the Transformer encoder by introducing a context-aware inheritance mechanism. An additional context embedding vector handed over from the previously processed block helps to encode not only local acoustic information but also global linguistic, channel, and speaker attributes. In this paper, we extend it towards an entire online E2E ASR system by introducing an online decoding process inspired by monotonic chunkwise attention (MoChA) into the Transformer decoder. Our novel MoChA training and inference algorithms exploit the unique properties of Transformer, whose attentions are not always monotonic or peaky, and have multiple heads and residual connections of the decoder layers. Evaluations of the Wall Street Journal (WSJ) and AISHELL-1 show that our proposed online Transformer decoder outperforms conventional chunkwise approaches.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.