Do you want to publish a course? Click here

Leveraging End-to-End ASR for Endangered Language Documentation: An Empirical Study on Yoloxochitl Mixtec

68   0   0.0 ( 0 )
 Added by Jiatong Shi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Transcription bottlenecks, created by a shortage of effective human transcribers are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxochitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.



rate research

Read More

A key desiderata for inclusive and accessible speech recognition technology is ensuring its robust performance to childrens speech. Notably, this includes the rapidly advancing neural network based end-to-end speech recognition systems. Children speech recognition is more challenging due to the larger intra-inter speaker variability in terms of acoustic and linguistic characteristics compared to adult speech. Furthermore, the lack of adequate and appropriate children speech resources adds to the challenge of designing robust end-to-end neural architectures. This study provides a critical assessment of automatic children speech recognition through an empirical study of contemporary state-of-the-art end-to-end speech recognition systems. Insights are provided on the aspects of training data requirements, adaptation on children data, and the effect of children age, utterance lengths, different architectures and loss functions for end-to-end systems and role of language models on the speech recognition performance.
400 - Bo Li , Anmol Gulati , Jiahui Yu 2020
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compared to a conventional ASR model. To address this issue, we look at encouraging the E2E model to emit words early, through an algorithm called FastEmit [3]. Naturally, improving on latency results in a quality degradation. To address this, we explore replacing the LSTM layers in the encoder of our E2E model with Conformer layers [4], which has shown good improvements for ASR. Secondly, we also explore running a 2nd-pass beam search to improve quality. In order to ensure the 2nd-pass completes quickly, we explore non-causal Conformer layers that feed into the same 1st-pass RNN-T decoder, an algorithm called Cascaded Encoders [5]. Overall, we find that the Conformer RNN-T with Cascaded Encoders offers a better quality and latency tradeoff for streaming ASR.
Joint optimization of multi-channel front-end and automatic speech recognition (ASR) has attracted much interest. While promising results have been reported for various tasks, past studies on its meeting transcription application were limited to small scale experiments. It is still unclear whether such a joint framework can be beneficial for a more practical setup where a massive amount of single channel training data can be leveraged for building a strong ASR back-end. In this work, we present our investigation on the joint modeling of a mask-based beamformer and Attention-Encoder-Decoder-based ASR in the setting where we have 75k hours of single-channel data and a relatively small amount of real multi-channel data for model training. We explore effective training procedures, including a comparison of simulated and real multi-channel training data. To guide the recognition towards a target speaker and deal with overlapped speech, we also explore various combinations of bias information, such as direction of arrivals and speaker profiles. We propose an effective location bias integration method called deep concatenation for the beamformer network. In our evaluation on various meeting recordings, we show that the proposed framework achieves a substantial word error rate reduction.
We propose a technique to compute spectrograms using Frequency Domain Linear Prediction (FDLP) that uses all-pole models to fit the squared Hilbert envelope of speech in different frequency sub-bands. The spectrogram of a complete speech utterance is computed by overlap-add of contiguous all-pole model responses. A long context window of 1.5 seconds allows us to capture the low frequency temporal modulations of speech in the spectrogram. For an end-to-end automatic speech recognition task, the FDLP spectrogram performs on par with the standard mel spectrogram features for clean read speech training and test data. For more realistic speech data with train-test domain mismatches or reverberations, FDLP spectrogram shows up to 25% and 22% relative WER improvements over mel spectrogram respectively.
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be inferred on-the-fly with minimum latency. Furthermore, in voice-activated smart assistant systems, language identity is also required for downstream processing of ASR output. In this paper, we introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification (LID) using the recurrent neural network transducer (RNN-T) architecture. On the input side, embeddings from pretrained acoustic-only LID classifiers are used to guide RNN-T training and inference, while on the output side, language targets are jointly modeled with ASR targets. The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India. Experiments show that for English-Spanish, the bilingual joint ASR-LID architecture matches monolingual ASR and acoustic-only LID accuracies. For the more challenging (owing to within-utterance code switching) case of English-Hindi, English ASR and LID metrics show degradation. Overall, in scenarios where users switch dynamically between languages, the proposed architecture offers a promising simplification over running multiple monolingual ASR models and an LID classifier in parallel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا