Do you want to publish a course? Click here

Understanding User Topic Preferences across Multiple Social Networks

75   0   0.0 ( 0 )
 Added by Zi Qing Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years, social networks have shown diversity in function and applications. People begin to use multiple online social networks simultaneously for different demands. The ability to uncover a users latent topic and social network preference is critical for community detection, recommendation, and personalized service across social networks. Unfortunately, most current works focus on the single network, necessitating new technology and models to address this issue. This paper proposes a user preference discovery model on multiple social networks. Firstly, the global and local topic concepts are defined, then a latent semantic topic discovery method is used to obtain global and local topic word distributions, along with user topic and social network preferences. After that, the topic distribution characteristics of different social networks are examined, as well as the reasons why users choose one network over another to create a post. Next, a Gibbs sampling algorithm is adopted to obtain the model parameters. In the experiment, we collect data from Twitter, Instagram, and Tumblr websites to build a dataset of multiple social networks. Finally, we compare our research to previous works, and both qualitative and quantitative evaluation results have demonstrated the effectiveness.



rate research

Read More

With the rapid development of Internet technology, online social networks (OSNs) have got fast development and become increasingly popular. Meanwhile, the research works across multiple social networks attract more and more attention from researchers, and community detection is an important one across OSNs for online security problems, such as the user behavior analysis and abnormal community discovery. In this paper, a community detection method is proposed across multiple social networks based on overlapping users. First, the concept of overlapping users is defined, then an algorithm CMN NMF is designed to discover the stub communities from overlapping users based on the social relevance. After that, we extend each stub community in different social networks by adding the users with strong similarity, and in the end different communities are excavated out across networks. Experimental results show the advantage on effectiveness of our method over other methods under real data sets.
We propose a stochastic model for the diffusion of topics entering a social network modeled by a Watts-Strogatz graph. Our model sets into play an implicit competition between these topics as they vie for the attention of users in the network. The dynamics of our model are based on notions taken from real-world OSNs like Twitter where users either adopt an exogenous topic or copy topics from their neighbors leading to endogenous propagation. When instantiated correctly, the model achieves a viral regime where a few topics garner unusually good response from the network, closely mimicking the behavior of real-world OSNs. Our main contribution is our description of how clusters of proximate users that have spoken on the topic merge to form a large giant component making a topic go viral. This demonstrates that it is not weak ties but actually strong ties that play a major part in virality. We further validate our model and our hypotheses about its behavior by comparing our simulation results with the results of a measurement study conducted on real data taken from Twitter.
Hundreds of millions of Chinese people have become social network users in recent years, and aligning the accounts of common Chinese users across multiple social networks is valuable to many inter-network applications, e.g., cross-network recommendation, cross-network link prediction. Many methods have explored the proper ways of utilizing account name information into aligning the common English users accounts. However, how to properly utilize the account name information when aligning the Chinese user accounts remains to be detailedly studied. In this paper, we firstly discuss the available naming behavioral models as well as the related features for different types of Chinese account name matchings. Secondly, we propose the framework of Multi-View Cross-Network User Alignment (MCUA) method, which uses a multi-view framework to creatively integrate different models to deal with different types of Chinese account name matchings, and can consider all of the studied features when aligning the Chinese user accounts. Finally, we conduct experiments to prove that MCUA can outperform many existing methods on aligning Chinese user accounts between Sina Weibo and Twitter. Besides, we also study the best learning models and the top-k valuable features of different types of name matchings for MCUA over our experimental data sets.
Given a large population, it is an intensive task to gather individual preferences over a set of alternatives and arrive at an aggregate or collective preference of the population. We show that social network underlying the population can be harnessed to accomplish this task effectively, by sampling preferences of a small subset of representative nodes. We first develop a Facebook app to create a dataset consisting of preferences of nodes and the underlying social network, using which, we develop models that capture how preferences are distributed among nodes in a typical social network. We hence propose an appropriate objective function for the problem of selecting best representative nodes. We devise two algorithms, namely, Greedy-min which provides a performance guarantee for a wide class of popular voting rules, and Greedy-sum which exhibits excellent performance in practice. We compare the performance of these proposed algorithms against random-polling and popular centrality measures, and provide a detailed analysis of the obtained results. Our analysis suggests that selecting representatives using social network information is advantageous for aggregating preferences related to personal topics (e.g., lifestyle), while random polling with a reasonable sample size is good enough for aggregating preferences related to social topics (e.g., government policies).
The election control problem through social influence asks to find a set of nodes in a social network of voters to be the starters of a political campaign aiming at supporting a given target candidate. Voters reached by the campaign change their opinions on the candidates. The goal is to shape the diffusion of the campaign in such a way that the chances of victory of the target candidate are maximized. Previous work shows that the problem can be approximated within a constant factor in several models of information diffusion and voting systems, assuming that the controller, i.e., the external agent that starts the campaign, has full knowledge of the preferences of voters. However this information is not always available since some voters might not reveal it. Herein we relax this assumption by considering that each voter is associated with a probability distribution over the candidates. We propose two models in which, when an electoral campaign reaches a voter, this latter modifies its probability distribution according to the amount of influence it received from its neighbors in the network. We then study the election control problem through social influence on the new models: In the first model, under the Gap-ETH, election control cannot be approximated within a factor better than $1/n^{o(1)}$, where $n$ is the number of voters; in the second model, which is a slight relaxation of the first one, the problem admits a constant factor approximation algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا