No Arabic abstract
Given a large population, it is an intensive task to gather individual preferences over a set of alternatives and arrive at an aggregate or collective preference of the population. We show that social network underlying the population can be harnessed to accomplish this task effectively, by sampling preferences of a small subset of representative nodes. We first develop a Facebook app to create a dataset consisting of preferences of nodes and the underlying social network, using which, we develop models that capture how preferences are distributed among nodes in a typical social network. We hence propose an appropriate objective function for the problem of selecting best representative nodes. We devise two algorithms, namely, Greedy-min which provides a performance guarantee for a wide class of popular voting rules, and Greedy-sum which exhibits excellent performance in practice. We compare the performance of these proposed algorithms against random-polling and popular centrality measures, and provide a detailed analysis of the obtained results. Our analysis suggests that selecting representatives using social network information is advantageous for aggregating preferences related to personal topics (e.g., lifestyle), while random polling with a reasonable sample size is good enough for aggregating preferences related to social topics (e.g., government policies).
Physical contacts result in the spread of various phenomena such as viruses, gossips, ideas, packages and marketing pamphlets across a population. The spread depends on how people move and co-locate with each other, or their mobility patterns. How far such phenomena spread has significance for both policy making and personal decision making, e.g., studying the spread of COVID-19 under different intervention strategies such as wearing a mask. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of individuals. In this paper, we formalize and study the problem of estimating the spread of a phenomena in a population, given that we only have access to sub-samples of location visits of some individuals in the population. We show that simple solutions such as estimating the spread in the sub-sample and scaling it to the population, or more sophisticated solutions that rely on modeling location visits of individuals do not perform well in practice, the former because it ignores contacts between unobserved individuals and sampled ones and the latter because it yields inaccurate modeling of co-locations. Instead, we directly model the co-locations between the individuals. We introduce PollSpreader and PollSusceptible, two novel approaches that model the co-locations between individuals using a contact network, and infer the properties of the contact network using the subsample to estimate the spread of the phenomena in the entire population. We show that our estimates provide an upper bound and a lower bound on the spread of the disease in expectation. Finally, using a large high-resolution real-world mobility dataset, we experimentally show that our estimates are accurate, while other methods that do not correctly account for co-locations between individuals result in wrong observations (e.g, premature herd-immunity).
This paper explains the design of a social network analysis framework, developed under DARPAs SocialSim program, with novel architecture that models human emotional, cognitive and social factors. Our framework is both theory and data-driven, and utilizes domain expertise. Our simulation effort helps in understanding how information flows and evolves in social media platforms. We focused on modeling three information domains: cryptocurrencies, cyber threats, and software vulnerabilities for the three interrelated social environments: GitHub, Reddit, and Twitter. We participated in the SocialSim DARPA Challenge in December 2018, in which our models were subjected to extensive performance evaluation for accuracy, generalizability, explainability, and experimental power. This paper reports the main concepts and models, utilized in our social media modeling effort in developing a multi-resolution simulation at the user, community, population, and content levels.
In this paper, we introduce a novel, general purpose, technique for faster sampling of nodes over an online social network. Specifically, unlike traditional random walk which wait for the convergence of sampling distribution to a predetermined target distribution - a waiting process that incurs a high query cost - we develop WALK-ESTIMATE, which starts with a much shorter random walk, and then proactively estimate the sampling probability for the node taken before using acceptance-rejection sampling to adjust the sampling probability to the predetermined target distribution. We present a novel backward random walk technique which provides provably unbiased estimations for the sampling probability, and demonstrate the superiority of WALK-ESTIMATE over traditional random walks through theoretical analysis and extensive experiments over real world online social networks.
With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purpose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.
Random walk-based sampling methods are gaining popularity and importance in characterizing large networks. While powerful, they suffer from the slow mixing problem when the graph is loosely connected, which results in poor estimation accuracy. Random walk with jumps (RWwJ) can address the slow mixing problem but it is inapplicable if the graph does not support uniform vertex sampling (UNI). In this work, we develop methods that can efficiently sample a graph without the necessity of UNI but still enjoy the similar benefits as RWwJ. We observe that many graphs under study, called target graphs, do not exist in isolation. In many situations, a target graph is related to an auxiliary graph and a bipartite graph, and they together form a better connected {em two-layered network structure}. This new viewpoint brings extra benefits to graph sampling: if directly sampling a target graph is difficult, we can sample it indirectly with the assistance of the other two graphs. We propose a series of new graph sampling techniques by exploiting such a two-layered network structure to estimate target graph characteristics. Experiments conducted on both synthetic and real-world networks demonstrate the effectiveness and usefulness of these new techniques.