No Arabic abstract
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph $G$ at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of K{o}nigsberg problem in 1736. What if Euler had to take a bus? In a temporal graph $(G,lambda)$, with $lambda: E(G)to 2^{[tau]}$, an edge $ein E(G)$ is available only at the times specified by $lambda(e)subseteq [tau]$, in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this scenario, even though several translations of Eulerian trails and walks are possible in temporal terms, only a very particular variation has been exploited in the literature, specifically for infinite dynamic networks (Orlin, 1984). In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether $(G,lambda)$ has a temporal walk or trail is polynomial, while deciding whether it has a local trail is NP-complete even if it has lifetime~2. In contrast, in the general case, solving any of these problems is NP-complete, even under very strict hypothesis.
Inductive $k$-independent graphs generalize chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced $c$-colorable subgraphs, which is a generalization of finding maximum independent sets, naturally occurs when selecting $c$ sets of pairwise non-conflicting jobs (modeled as graph vertices). We investigate the parameterized complexity of this problem on inductive $k$-independent graphs. We show that the Independent Set problem is W[1]-hard even on 2-simplicial 3-minoes---a subclass of inductive 2-independent graphs. In contrast, we prove that the more general Maximum $c$-Colorable Subgraph problem is fixed-parameter tractable on edge-wise unions of cluster and chordal graphs, which are 2-simplicial. In both cases, the parameter is the solution size. Aside from this, we survey other graph classes between inductive 1-inductive and inductive 2-inductive graphs with applications in scheduling.
We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path results in a unique sequence. In this paper, we show that this problem remains NP-complete when the graph is planar and we give a 4-approximation algorithm in this setting. We also show, via Courcelles theorem, that it can be solved in linear time for graphs of bounded-clique width, when its clique decomposition is given in advance.
Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few measurement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of propagation. For measurement devices placed on a set S of vertices of a graph G, the set of monitored vertices is initially the set S together with all its neighbors. Then iteratively, whenever some monitored vertex v has a single neighbor u not yet monitored, u gets monitored. A set S is said to be a power dominating set of the graph G if all vertices of G eventually are monitored. The power domination number of a graph is the minimum size of a power dominating set. In this paper, we prove that any maximal planar graph of order n $ge$ 6 admits a power dominating set of size at most (n--2)/4 .
We prove that if $G$ is a sparse graph --- it belongs to a fixed class of bounded expansion $mathcal{C}$ --- and $din mathbb{N}$ is fixed, then the $d$th power of $G$ can be partitioned into cliques so that contracting each of these clique to a single vertex again yields a sparse graph. This result has several graph-theoretic and algorithmic consequences for powers of sparse graphs, including bounds on their subchromatic number and efficient approximation algorithms for the chromatic number and the clique number.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.