No Arabic abstract
We prove that if $G$ is a sparse graph --- it belongs to a fixed class of bounded expansion $mathcal{C}$ --- and $din mathbb{N}$ is fixed, then the $d$th power of $G$ can be partitioned into cliques so that contracting each of these clique to a single vertex again yields a sparse graph. This result has several graph-theoretic and algorithmic consequences for powers of sparse graphs, including bounds on their subchromatic number and efficient approximation algorithms for the chromatic number and the clique number.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class has unbounded degree and contains arbitrarily large clique-minors. We ask whether this is necessary. We prove that for every graph $G$, if $G$ excludes a fixed graph $H$ as a minor, then $G$ either has small tree-width, or $G$ contains a large wall or the line graph of a large wall as induced subgraph. This can be seen as a strengthening of Robertson and Seymours excluded grid theorem for the case of minor-free graphs. Our theorem implies that every class of even-hole-free graphs excluding a fixed graph as a minor has bounded tree-width. In fact, our theorem applies to a more general class: (theta, prism)-free graphs. This implies the known result that planar even hole-free graph have bounded tree-width [da Silva and Linhares Sales, Discrete Applied Mathematics 2010]. We conjecture that even-hole-free graphs of bounded degree have bounded tree-width. If true, this would mean that even-hole-freeness is testable in the bounded-degree graph model of property testing. We prove the conjecture for subcubic graphs and we give a bound on the tree-width of the class of (even hole, pyramid)-free graphs of degree at most 4.
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph $G$ contains a cactus subgraph $C$ where $C$ contains at least a $frac{1}{6}$ fraction of the triangular faces of $G$. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing dense planar structures inside any graph: (i) A $frac{1}{6}$ approximation algorithm for, given any graph $G$, finding a planar subgraph with a maximum number of triangular faces; this improves upon the previous $frac{1}{11}$-approximation; (ii) An alternate (and arguably more illustrative) proof of the $frac{4}{9}$ approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind.
We study the graphs formed from instances of the stable matching problem by connecting pairs of elements with an edge when there exists a stable matching in which they are matched. Our results include the NP-completeness of recognizing these graphs, an exact recognition algorithm that is singly exponential in the number of edges of the given graph, and an algorithm whose time is linear in the number of vertices of the graph but exponential in a polynomial of its carving width. We also provide characterizations of graphs of stably matchable pairs that belong to certain classes of graphs, and of the lattices of stable matchings that can have graphs in these classes.
We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path results in a unique sequence. In this paper, we show that this problem remains NP-complete when the graph is planar and we give a 4-approximation algorithm in this setting. We also show, via Courcelles theorem, that it can be solved in linear time for graphs of bounded-clique width, when its clique decomposition is given in advance.