Do you want to publish a course? Click here

Power domination in maximal planar graphs

124   0   0.0 ( 0 )
 Added by Claire Pennarun
 Publication date 2017
and research's language is English
 Authors Paul Dorbec




Ask ChatGPT about the research

Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few measurement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of propagation. For measurement devices placed on a set S of vertices of a graph G, the set of monitored vertices is initially the set S together with all its neighbors. Then iteratively, whenever some monitored vertex v has a single neighbor u not yet monitored, u gets monitored. A set S is said to be a power dominating set of the graph G if all vertices of G eventually are monitored. The power domination number of a graph is the minimum size of a power dominating set. In this paper, we prove that any maximal planar graph of order n $ge$ 6 admits a power dominating set of size at most (n--2)/4 .



rate research

Read More

We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path results in a unique sequence. In this paper, we show that this problem remains NP-complete when the graph is planar and we give a 4-approximation algorithm in this setting. We also show, via Courcelles theorem, that it can be solved in linear time for graphs of bounded-clique width, when its clique decomposition is given in advance.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
A vertex subset $S$ of a graph $G=(V,E)$ is a $[1,2]$-dominating set if each vertex of $Vbackslash S$ is adjacent to either one or two vertices in $S$. The minimum cardinality of a $[1,2]$-dominating set of $G$, denoted by $gamma_{[1,2]}(G)$, is called the $[1,2]$-domination number of $G$. In this paper the $[1,2]$-domination and the $[1,2]$-total domination numbers of the generalized Petersen graphs $P(n,2)$ are determined.
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph $G$ contains a cactus subgraph $C$ where $C$ contains at least a $frac{1}{6}$ fraction of the triangular faces of $G$. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing dense planar structures inside any graph: (i) A $frac{1}{6}$ approximation algorithm for, given any graph $G$, finding a planar subgraph with a maximum number of triangular faces; this improves upon the previous $frac{1}{11}$-approximation; (ii) An alternate (and arguably more illustrative) proof of the $frac{4}{9}$ approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind.
The concept of power domination emerged from the problem of monitoring electrical systems. Given a graph G and a set S $subseteq$ V (G), a set M of monitored vertices is built as follows: at first, M contains only the vertices of S and their direct neighbors, and then each time a vertex in M has exactly one neighbor not in M, this neighbor is added to M. The power domination number of a graph G is the minimum size of a set S such that this process ends up with the set M containing every vertex of G. We here show that the power domination number of a triangular grid T_k with hexagonal-shape border of length k -- 1 is exactly $lceil k/3 rceil.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا