No Arabic abstract
Band topology is both constrained and enriched by the presence of symmetry. The importance of anti-unitary symmetries such as time reversal was recognized early on leading to the classification of topological band structures based on the ten-fold way. Since then, lattice point group and non-symmorphic symmetries have been seen to lead to a vast range of possible topologically nontrivial band structures many of which are realized in materials. In this paper we show that band topology is further enriched in many physically realizable instances where magnetic and lattice degrees of freedom are wholly or partially decoupled. The appropriate symmetry groups to describe general magnetic systems are the spin-space groups. Here we describe cases where spin-space groups are essential to understand the band topology in magnetic materials. We then focus on magnon band topology where the theory of spin-space groups has its simplest realization. We consider magnetic Hamiltonians with various types of coupling including Heisenberg and Kitaev couplings revealing a hierarchy of enhanced magnetic symmetry groups depending on the nature of the lattice and the couplings. We describe, in detail, the associated representation theory and compatibility relations thus characterizing symmetry-enforced constraints on the magnon bands revealing a proliferation of nodal points, lines, planes and volumes.
We study the Atiyah-Hirzebruch spectral sequence (AHSS) for equivariant K-theory in the context of band theory. Various notions in the band theory such as irreducible representations at high-symmetric points, the compatibility relation, topological gapless and singular points naturally fits into the AHSS. As an application of the AHSS, we get the complete list of topological invariants for 230 space groups without time-reversal or particle-hole invariance. We find that a lot of torsion topological invariants appear even for symmorphic space groups.
The formation of coplanar spin spirals is a common motif in the magnetic ordering of many frustrated magnets. For classical antiferromagnets, geometric frustration can lead to a massively degenerate ground state manifold of spirals whose propagation vectors can be described, depending on the lattice geometry, by points (triangular), lines (fcc), surfaces (frustrated diamond) or completely flat bands (pyrochlore). Here we demonstrate an exact mathematical correspondence of these spiral manifolds of classical antiferromagnets with the Fermi surfaces of free-fermion band structures. We provide an explicit lattice construction relating the frustrated spin model to a corresponding free-fermion tight-binding model. Examples of this correspondence relate the 120$^circ$ order of the triangular lattice antiferromagnet to the Dirac nodal structure of the honeycomb tight-binding model or the spiral line manifold of the fcc antiferromagnet to the Dirac nodal line of the diamond tight-binding model. We discuss implications of topological band structures in the fermionic system to the corresponding classical spin system.
Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple, isotropic interactions. We consider the entire class of these magnets when their interactions are spatially anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be mapped onto the folding motions of a generalized spin origami two-dimensional mechanical sheet. Some such anisotropic spin systems, including Cs2ZrCu3F12, map onto flat origami sheets, possessing extensive degeneracy similar to isotropic systems. Others, such as Cs2CeCu3F12, can be mapped onto sheets with non-zero Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even such distortions do not always lift the entire degeneracy, instead permitting a large but sub-extensive space of zero-energy modes. We show that for Cs2CeCu3F12, due to an additional point group symmetry associated with structure, these modes are Dirac line nodes with a double degeneracy protected by a topological invariant. The existence of mechanical analogs thus serves to identify and explicate the robust degeneracy of the spin systems.
When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moire Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in $K$-theory. The moire band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two $Z_2$ invariants characterize the topology of the moire Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.