Do you want to publish a course? Click here

Topology and geometry of spin origami

68   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple, isotropic interactions. We consider the entire class of these magnets when their interactions are spatially anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be mapped onto the folding motions of a generalized spin origami two-dimensional mechanical sheet. Some such anisotropic spin systems, including Cs2ZrCu3F12, map onto flat origami sheets, possessing extensive degeneracy similar to isotropic systems. Others, such as Cs2CeCu3F12, can be mapped onto sheets with non-zero Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even such distortions do not always lift the entire degeneracy, instead permitting a large but sub-extensive space of zero-energy modes. We show that for Cs2CeCu3F12, due to an additional point group symmetry associated with structure, these modes are Dirac line nodes with a double degeneracy protected by a topological invariant. The existence of mechanical analogs thus serves to identify and explicate the robust degeneracy of the spin systems.



rate research

Read More

In this study, we examine the thermodynamics and spin dynamics of spin-1/2 and spin-3/2 heptamers. Through an exact diagonalization of the isotropic Heisenberg Hamiltonian, we find the closed-form, analytical representations for thermodynamic properties, spin excitations, and neutron scattering structure factors. Furthermore, we investigate the {cluster-like excitations of quantum spin heptamer} in the three-dimensional pyrochlore lattice material MgCr$_2$O$_4$. Using a spin mapping of the spin-1/2 heptamer excitations, the calculated structure factors of the spin-3/2 heptamer are be determined, which provides clarification for the spin excitations in MgCr$_2$O$_4$. Overall, this study demonstrates the ability to use the spin mapping of structure factors for small spin systems to analyze more complex structures.
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ with quasi-two-dimensional structure. Both in-plane and out-of-plane dispersions of the spin waves are revealed in the ferromagnetic state, similarly dispersive but damped spin excitations persist into the paramagnetic state. The effective exchange interactions have been estimated by a semi-classical Heisenberg model to consistently reproduce the experimental $T_C$ and spin stiffness. However, a full spin wave gap below $E_g=2.3$ meV is observed at $T=4$ K, much larger than the estimated magnetic anisotropy energy ($sim0.6$ meV), while its temperature dependence indicates a significant contribution from the Weyl fermions. These results suggest that Co$_3$Sn$_2$S$_2$ is a three-dimensional correlated system with large spin stiffness, and the low-energy spin dynamics could interplay with the topological electron states.
KCuCl$_3$ is known to show a quantum phase transition from the disordered to antiferromagnetically ordered phases by applying pressure. There is a longitudinal excitation mode (Higgs amplitude mode) in the vicinity of the quantum critical point in the ordered phase. To detect the Higgs amplitude mode, high-pressure ESR measurements are performed in KCuCl$_3$. The experimental data are analyzed by the extended spin-wave theory on the basis of the vector spin chirality. We report the first ESR detection of the Higgs amplitude mode and the important role of the electric dipole described by the vector spin chirality.
Novel materials incorporating electronic degrees of freedom other than charge, including spin, orbital or valley textit{et al} have manifested themselves to be of the great interests and applicable potentials. Recently, the multipolar degrees of freedom have attracted remarkable attention in the electronic correlated effects. In this work, we systematically studied the transport, magnetic and thermodynamic properties of the topological semimetal candidate PrBi in the framework of crystalline electric field theory. Our results demonstrate the $Gamma_3$ non-Kramers doublet as the ground state of Pr$^{3+}$ (4$f^2$) ions. This ground state is nonmagnetic but carries a non-zero quadrupolar moment $langlehat{O}_2^0rangle$. A quadrupolar phase transition is inferred below 0.08 K. No obvious quadrupolar Kondo effect can be identified. Ultrahigh-field quantum oscillation measurements confirm PrBi as a semimetal with non-trivial Berry phase and low total carrier density 0.06 /f.u. We discuss the interplay between low carrier density and $4f^2$ quadrupolar moment, and ascribe the weak quadrupolar ordering and Kondo effect to consequences of the low carrier density. PrBi, thus, opens a new window to the physics of topology and strongly correlated effect with quadrupolar degrees of freedom in the low-carrier-density limit, evoking the need for a reexamination of the Nozi`{e}res exhaustion problem in the context of multi-channel Kondo effect.
The crystal structures and the physical (magnetic, electrical transport and thermodynamic) properties of the ternary compounds CeRhSi2 and Ce2Rh3Si5 (orthorhombic CeNiSi2- and U2Co3Si5-type structures, respectively) were studied in wide ranges of temperature and magnetic field strength. The results revealed that both materials are valence fluctuating systems, in line with previous literature reports. Direct evidence for valence fluctuations was obtained by means of Ce LIII-edge x-ray absorption spectroscopy and Ce 3d core-level x-ray photoelectron spectroscopy. The experimental data were confronted with the results of ab initio calculations of the electronic band structures in both compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا