Do you want to publish a course? Click here

Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation

71   0   0.0 ( 0 )
 Added by Jianwen Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper studies the unsupervised cross-domain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy-based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energy-based model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoder-decoder maps examples from the source domain to the target domain, while the energy-based model further refines the mapped results by Langevin revision such that the revised results match to the examples in the target domain in terms of the statistical properties, which are defined by the learned energy function. For the purpose of building up a correspondence between two unpaired domains, the proposed framework simultaneously learns a pair of cooperative networks with cycle consistency, accounting for a two-way translation between two domains, by alternating MCMC teaching. Experiments show that the proposed framework is useful for unsupervised image-to-image translation and unpaired image sequence translation.



rate research

Read More

199 - Rui Wang , Zuxuan Wu , Zejia Weng 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Employing clustering strategy to assign unlabeled target images with pseudo labels has become a trend for person re-identification (re-ID) algorithms in domain adaptation. A potential limitation of these clustering-based methods is that they always tend to introduce noisy labels, which will undoubtedly hamper the performance of our re-ID system. To handle this limitation, an intuitive solution is to utilize collaborative training to purify the pseudo label quality. However, there exists a challenge that the complementarity of two networks, which inevitably share a high similarity, becomes weakened gradually as training process goes on; worse still, these approaches typically ignore to consider the self-discrepancy of intra-class relations. To address this issue, in this paper, we propose a multiple co-teaching framework for domain adaptive person re-ID, opening up a promising direction about self-discrepancy problem under unsupervised condition. On top of that, a mean-teaching mechanism is leveraged to enlarge the difference and discover more complementary features. Comprehensive experiments conducted on several large-scale datasets show that our method achieves competitive performance compared with the state-of-the-arts.
Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learning experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.
We propose a self-supervised approach to deep surface deformation. Given a pair of shapes, our algorithm directly predicts a parametric transformation from one shape to the other respecting correspondences. Our insight is to use cycle-consistency to define a notion of good correspondences in groups of objects and use it as a supervisory signal to train our network. Our method does not rely on a template, assume near isometric deformations or rely on point-correspondence supervision. We demonstrate the efficacy of our approach by using it to transfer segmentation across shapes. We show, on Shapenet, that our approach is competitive with comparable state-of-the-art methods when annotated training data is readily available, but outperforms them by a large margin in the few-shot segmentation scenario.
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and expensive process in the majority of applications. When there is a need to translate images across n domains, if the training is performed between every two domains, the complexity of the training will increase quadratically. Moreover, training with data from two domains only at a time cannot benefit from data of other domains, which prevents the extraction of more useful features and hinders the progress of this research area. In this work, we propose a general framework for unsupervised image-to-image translation across multiple domains, which can translate images from domain X to any a domain without requiring direct training between the two domains involved in image translation. A byproduct of the framework is the reduction of computing time and computing resources, since it needs less time than training the domains in pairs as is done in state-of-the-art works. Our proposed framework consists of a pair of encoders along with a pair of GANs which learns high-level features across different domains to generate diverse and realistic samples from. Our framework shows competing results on many image-to-image tasks compared with state-of-the-art techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا