No Arabic abstract
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and expensive process in the majority of applications. When there is a need to translate images across n domains, if the training is performed between every two domains, the complexity of the training will increase quadratically. Moreover, training with data from two domains only at a time cannot benefit from data of other domains, which prevents the extraction of more useful features and hinders the progress of this research area. In this work, we propose a general framework for unsupervised image-to-image translation across multiple domains, which can translate images from domain X to any a domain without requiring direct training between the two domains involved in image translation. A byproduct of the framework is the reduction of computing time and computing resources, since it needs less time than training the domains in pairs as is done in state-of-the-art works. Our proposed framework consists of a pair of encoders along with a pair of GANs which learns high-level features across different domains to generate diverse and realistic samples from. Our framework shows competing results on many image-to-image tasks compared with state-of-the-art techniques.
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters. Our code and datasets are available at https://github.com/taki0112/UGATIT or https://github.com/znxlwm/UGATIT-pytorch.
Prior knowledge of face shape and structure plays an important role in face inpainting. However, traditional face inpainting methods mainly focus on the generated image resolution of the missing portion without consideration of the special particularities of the human face explicitly and generally produce discordant facial parts. To solve this problem, we present a domain embedded multi-model generative adversarial model for inpainting of face images with large cropped regions. We firstly represent only face regions using the latent variable as the domain knowledge and combine it with the non-face parts textures to generate high-quality face images with plausible contents. Two adversarial discriminators are finally used to judge whether the generated distribution is close to the real distribution or not. It can not only synthesize novel image structures but also explicitly utilize the embedded face domain knowledge to generate better predictions with consistency on structures and appearance. Experiments on both CelebA and CelebA-HQ face datasets demonstrate that our proposed approach achieved state-of-the-art performance and generates higher quality inpainting results than existing ones.
We propose a general framework for unsupervised domain adaptation, which allows deep neural networks trained on a source domain to be tested on a different target domain without requiring any training annotations in the target domain. This is achieved by adding extra networks and losses that help regularize the features extracted by the backbone encoder network. To this end we propose the novel use of the recently proposed unpaired image-toimage translation framework to constrain the features extracted by the encoder network. Specifically, we require that the features extracted are able to reconstruct the images in both domains. In addition we require that the distribution of features extracted from images in the two domains are indistinguishable. Many recent works can be seen as specific cases of our general framework. We apply our method for domain adaptation between MNIST, USPS, and SVHN datasets, and Amazon, Webcam and DSLR Office datasets in classification tasks, and also between GTA5 and Cityscapes datasets for a segmentation task. We demonstrate state of the art performance on each of these datasets.
The main challenges of image-to-image (I2I) translation are to make the translated image realistic and retain as much information from the source domain as possible. To address this issue, we propose a novel architecture, termed as IEGAN, which removes the encoder of each network and introduces an encoder that is independent of other networks. Compared with previous models, it embodies three advantages of our model: Firstly, it is more directly and comprehensively to grasp image information since the encoder no longer receives loss from generator and discriminator. Secondly, the independent encoder allows each network to focus more on its own goal which makes the translated image more realistic. Thirdly, the reduction in the number of encoders performs more unified image representation. However, when the independent encoder applies two down-sampling blocks, its hard to extract semantic information. To tackle this problem, we propose deep and shallow information space containing characteristic and semantic information, which can guide the model to translate high-quality images under the task with significant shape or texture change. We compare IEGAN with other previous models, and conduct researches on semantic information consistency and component ablation at the same time. These experiments show the superiority and effectiveness of our architecture. Our code is published on: https://github.com/Elvinky/IEGAN.