No Arabic abstract
Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learning experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and expensive process in the majority of applications. When there is a need to translate images across n domains, if the training is performed between every two domains, the complexity of the training will increase quadratically. Moreover, training with data from two domains only at a time cannot benefit from data of other domains, which prevents the extraction of more useful features and hinders the progress of this research area. In this work, we propose a general framework for unsupervised image-to-image translation across multiple domains, which can translate images from domain X to any a domain without requiring direct training between the two domains involved in image translation. A byproduct of the framework is the reduction of computing time and computing resources, since it needs less time than training the domains in pairs as is done in state-of-the-art works. Our proposed framework consists of a pair of encoders along with a pair of GANs which learns high-level features across different domains to generate diverse and realistic samples from. Our framework shows competing results on many image-to-image tasks compared with state-of-the-art techniques.
As data from IoT (Internet of Things) sensors become ubiquitous, state-of-the-art machine learning algorithms face many challenges on directly using sensor data. To overcome these challenges, methods must be designed to learn directly from sensors without manual annotations. This paper introduces Sensory Time-cue for Unsupervised Meta-learning (STUM). Different from traditional learning approaches that either heavily depend on labels or on time-independent feature extraction assumptions, such as Gaussian distribution features, the STUM system uses time relation of inputs to guide the feature space formation within and across modalities. The fact that STUM learns from a variety of small tasks may put this method in the camp of Meta-Learning. Different from existing Meta-Learning approaches, STUM learning tasks are composed within and across multiple modalities based on time-cue co-exist with the IoT streaming data. In an audiovisual learning example, because consecutive visual frames usually comprise the same object, this approach provides a unique way to organize features from the same object together. The same method can also organize visual object features with the objects spoken-name features together if the spoken name is presented with the object at about the same time. This cross-modality feature organization may further help the organization of visual features that belong to similar objects but acquired at different location and time. Promising results are achieved through evaluations.
Existing unsupervised video-to-video translation methods fail to produce translated videos which are frame-wise realistic, semantic information preserving and video-level consistent. In this work, we propose UVIT, a novel unsupervised video-to-video translation model. Our model decomposes the style and the content, uses the specialized encoder-decoder structure and propagates the inter-frame information through bidirectional recurrent neural network (RNN) units. The style-content decomposition mechanism enables us to achieve style consistent video translation results as well as provides us with a good interface for modality flexible translation. In addition, by changing the input frames and style codes incorporated in our translation, we propose a video interpolation loss, which captures temporal information within the sequence to train our building blocks in a self-supervised manner. Our model can produce photo-realistic, spatio-temporal consistent translated videos in a multimodal way. Subjective and objective experimental results validate the superiority of our model over existing methods. More details can be found on our project website: https://uvit.netlify.com
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domains annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.