No Arabic abstract
Person image synthesis, e.g., pose transfer, is a challenging problem due to large variation and occlusion. Existing methods have difficulties predicting reasonable invisible regions and fail to decouple the shape and style of clothing, which limits their applications on person image editing. In this paper, we propose PISE, a novel two-stage generative model for Person Image Synthesis and Editing, which is able to generate realistic person images with desired poses, textures, or semantic layouts. For human pose transfer, we first synthesize a human parsing map aligned with the target pose to represent the shape of clothing by a parsing generator, and then generate the final image by an image generator. To decouple the shape and style of clothing, we propose joint global and local per-region encoding and normalization to predict the reasonable style of clothing for invisible regions. We also propose spatial-aware normalization to retain the spatial context relationship in the source image. The results of qualitative and quantitative experiments demonstrate the superiority of our model on human pose transfer. Besides, the results of texture transfer and region editing show that our model can be applied to person image editing.
Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to the inability of modelling the data distribution conditioned on pose. Existing works use a complicated pose transformation model with various additional features such as foreground segmentation, human body parsing etc. to achieve robustness that leads to computational overhead. In this work, we propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose. Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale. We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.
We introduce a new image editing and synthesis framework, Stochastic Differential Editing (SDEdit), based on a recent generative model using stochastic differential equations (SDEs). Given an input image with user edits (e.g., hand-drawn color strokes), we first add noise to the input according to an SDE, and subsequently denoise it by simulating the reverse SDE to gradually increase its likelihood under the prior. Our method does not require task-specific loss function designs, which are critical components for recent image editing methods based on GAN inversion. Compared to conditional GANs, we do not need to collect new datasets of original and edited images for new applications. Therefore, our method can quickly adapt to various editing tasks at test time without re-training models. Our approach achieves strong performance on a wide range of applications, including image synthesis and editing guided by stroke paintings and image compositing.
Generative adversarial networks (GANs) have enabled photorealistic image synthesis and editing. However, due to the high computational cost of large-scale generators (e.g., StyleGAN2), it usually takes seconds to see the results of a single edit on edge devices, prohibiting interactive user experience. In this paper, we take inspirations from modern rendering software and propose Anycost GAN for interactive natural image editing. We train the Anycost GAN to support elastic resolutions and channels for faster image generation at versatile speeds. Running subsets of the full generator produce outputs that are perceptually similar to the full generator, making them a good proxy for preview. By using sampling-based multi-resolution training, adaptive-channel training, and a generator-conditioned discriminator, the anycost generator can be evaluated at various configurations while achieving better image quality compared to separately trained models. Furthermore, we develop new encoder training and latent code optimization techniques to encourage consistency between the different sub-generators during image projection. Anycost GAN can be executed at various cost budgets (up to 10x computation reduction) and adapt to a wide range of hardware and latency requirements. When deployed on desktop CPUs and edge devices, our model can provide perceptually similar previews at 6-12x speedup, enabling interactive image editing. The code and demo are publicly available: https://github.com/mit-han-lab/anycost-gan.
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appearance transferred image synthesis. In the first stage, our method infers a reasonable target human pose based on the text. In the second stage, our method synthesizes a realistic and appearance transferred person image according to the text in conjunction with the target pose. Our method extracts sufficient information from the text and establishes a mapping between the image space and the language space, making generating and editing images corresponding to the description possible. We conduct extensive experiments to reveal the effectiveness of our method, as well as using the VQA Perceptual Score as a metric for evaluating the method. It shows for the first time that we can automatically edit the person image from the natural language descriptions.
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination). We first formulate GAN inversion as a lossy data compression problem and carefully discuss the Rate-Distortion-Edit trade-off. Due to this trade-off, previous works fail to achieve high-fidelity reconstruction while keeping compelling editing ability with a low bit-rate latent code only. In this work, we propose a distortion consultation approach that employs the distortion map as a reference for reconstruction. In the distortion consultation inversion (DCI), the distortion map is first projected to a high-rate latent map, which then complements the basic low-rate latent code with (lost) details via consultation fusion. To achieve high-fidelity editing, we propose an adaptive distortion alignment (ADA) module with a self-supervised training scheme. Extensive experiments in the face and car domains show a clear improvement in terms of both inversion and editing quality.