Do you want to publish a course? Click here

Anycost GANs for Interactive Image Synthesis and Editing

80   0   0.0 ( 0 )
 Added by Ji Lin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks (GANs) have enabled photorealistic image synthesis and editing. However, due to the high computational cost of large-scale generators (e.g., StyleGAN2), it usually takes seconds to see the results of a single edit on edge devices, prohibiting interactive user experience. In this paper, we take inspirations from modern rendering software and propose Anycost GAN for interactive natural image editing. We train the Anycost GAN to support elastic resolutions and channels for faster image generation at versatile speeds. Running subsets of the full generator produce outputs that are perceptually similar to the full generator, making them a good proxy for preview. By using sampling-based multi-resolution training, adaptive-channel training, and a generator-conditioned discriminator, the anycost generator can be evaluated at various configurations while achieving better image quality compared to separately trained models. Furthermore, we develop new encoder training and latent code optimization techniques to encourage consistency between the different sub-generators during image projection. Anycost GAN can be executed at various cost budgets (up to 10x computation reduction) and adapt to a wide range of hardware and latency requirements. When deployed on desktop CPUs and edge devices, our model can provide perceptually similar previews at 6-12x speedup, enabling interactive image editing. The code and demo are publicly available: https://github.com/mit-han-lab/anycost-gan.



rate research

Read More

72 - Wei Sun , Tianfu Wu 2020
With the remarkable recent progress on learning deep generative models, it becomes increasingly interesting to develop models for controllable image synthesis from reconfigurable inputs. This paper focuses on a recent emerged task, layout-to-image, to learn generative models that are capable of synthesizing photo-realistic images from spatial layout (i.e., object bounding boxes configured in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors). This paper first proposes an intuitive paradigm for the task, layout-to-mask-to-image, to learn to unfold object masks of given bounding boxes in an input layout to bridge the gap between the input layout and synthesized images. Then, this paper presents a method built on Generative Adversarial Networks for the proposed layout-to-mask-to-image with style control at both image and mask levels. Object masks are learned from the input layout and iteratively refined along stages in the generator network. Style control at the image level is the same as in vanilla GANs, while style control at the object mask level is realized by a proposed novel feature normalization scheme, Instance-Sensitive and Layout-Aware Normalization. In experiments, the proposed method is tested in the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained.
Person image synthesis, e.g., pose transfer, is a challenging problem due to large variation and occlusion. Existing methods have difficulties predicting reasonable invisible regions and fail to decouple the shape and style of clothing, which limits their applications on person image editing. In this paper, we propose PISE, a novel two-stage generative model for Person Image Synthesis and Editing, which is able to generate realistic person images with desired poses, textures, or semantic layouts. For human pose transfer, we first synthesize a human parsing map aligned with the target pose to represent the shape of clothing by a parsing generator, and then generate the final image by an image generator. To decouple the shape and style of clothing, we propose joint global and local per-region encoding and normalization to predict the reasonable style of clothing for invisible regions. We also propose spatial-aware normalization to retain the spatial context relationship in the source image. The results of qualitative and quantitative experiments demonstrate the superiority of our model on human pose transfer. Besides, the results of texture transfer and region editing show that our model can be applied to person image editing.
We introduce a new image editing and synthesis framework, Stochastic Differential Editing (SDEdit), based on a recent generative model using stochastic differential equations (SDEs). Given an input image with user edits (e.g., hand-drawn color strokes), we first add noise to the input according to an SDE, and subsequently denoise it by simulating the reverse SDE to gradually increase its likelihood under the prior. Our method does not require task-specific loss function designs, which are critical components for recent image editing methods based on GAN inversion. Compared to conditional GANs, we do not need to collect new datasets of original and edited images for new applications. Therefore, our method can quickly adapt to various editing tasks at test time without re-training models. Our approach achieves strong performance on a wide range of applications, including image synthesis and editing guided by stroke paintings and image compositing.
134 - Hao Tang , Xiaojuan Qi , Dan Xu 2020
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to two largely unresolved challenges. First, the semantic labels do not provide detailed structural information, making it difficult to synthesize local details and structures. Second, the widely adopted CNN operations such as convolution, down-sampling and normalization usually cause spatial resolution loss and thus are unable to fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects). To tackle the first challenge, we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. Further, to preserve the semantic information, we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout. Extensive experiments on two challenging datasets show that the proposed EdgeGAN can generate significantly better results than state-of-the-art methods. The source code and trained models are available at https://github.com/Ha0Tang/EdgeGAN.
Generative Adversarial Networks (GANs) have become increasingly powerful, generating mind-blowing photorealistic images that mimic the content of datasets they were trained to replicate. One recurrent theme in medical imaging is whether GANs can also be effective at generating workable medical data as they are for generating realistic RGB images. In this paper, we perform a multi-GAN and multi-application study to gauge the benefits of GANs in medical imaging. We tested various GAN architectures from basic DCGAN to more sophisticated style-based GANs on three medical imaging modalities and organs namely : cardiac cine-MRI, liver CT and RGB retina images. GANs were trained on well-known and widely utilized datasets from which their FID score were computed to measure the visual acuity of their generated images. We further tested their usefulness by measuring the segmentation accuracy of a U-Net trained on these generated images. Results reveal that GANs are far from being equal as some are ill-suited for medical imaging applications while others are much better off. The top-performing GANs are capable of generating realistic-looking medical images by FID standards that can fool trained experts in a visual Turing test and comply to some metrics. However, segmentation results suggests that no GAN is capable of reproducing the full richness of a medical datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا