Do you want to publish a course? Click here

A Robust Pose Transformational GAN for Pose Guided Person Image Synthesis

222   0   0.0 ( 0 )
 Added by Arnab Karmakar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to the inability of modelling the data distribution conditioned on pose. Existing works use a complicated pose transformation model with various additional features such as foreground segmentation, human body parsing etc. to achieve robustness that leads to computational overhead. In this work, we propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose. Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale. We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.



rate research

Read More

We present an algorithm for re-rendering a person from a single image under arbitrary poses. Existing methods often have difficulties in hallucinating occluded contents photo-realistically while preserving the identity and fine details in the source image. We first learn to inpaint the correspondence field between the body surface texture and the source image with a human body symmetry prior. The inpainted correspondence field allows us to transfer/warp local features extracted from the source to the target view even under large pose changes. Directly mapping the warped local features to an RGB image using a simple CNN decoder often leads to visible artifacts. Thus, we extend the StyleGAN generator so that it takes pose as input (for controlling poses) and introduces a spatially varying modulation for the latent space using the warped local features (for controlling appearances). We show that our method compares favorably against the state-of-the-art algorithms in both quantitative evaluation and visual comparison.
113 - Yurui Ren , Ge Li , Shan Liu 2020
Pose-guided person image generation and animation aim to transform a source person image to target poses. These tasks require spatial manipulation of source data. However, Convolutional Neural Networks are limited by the lack of ability to spatially transform the inputs. In this paper, we propose a differentiable global-flow local-attention framework to reassemble the inputs at the feature level. This framework first estimates global flow fields between sources and targets. Then, corresponding local source feature patches are sampled with content-aware local attention coefficients. We show that our framework can spatially transform the inputs in an efficient manner. Meanwhile, we further model the temporal consistency for the person image animation task to generate coherent videos. The experiment results of both image generation and animation tasks demonstrate the superiority of our model. Besides, additional results of novel view synthesis and face image animation show that our model is applicable to other tasks requiring spatial transformation. The source code of our project is available at https://github.com/RenYurui/Global-Flow-Local-Attention.
In this paper, we propose a novel approach to solve the pose guided person image generation task. We assume that the relation between pose and appearance information can be described by a simple matrix operation in hidden space. Based on this assumption, our method estimates a pose-invariant feature matrix for each identity, and uses it to predict the target appearance conditioned on the target pose. The estimation process is formulated as a p-norm regression problem in hidden space. By utilizing the differentiation of the solution of this regression problem, the parameters of the whole framework can be trained in an end-to-end manner. While most previous works are only applicable to the supervised training and single-shot generation scenario, our method can be easily adapted to unsupervised training and multi-shot generation. Extensive experiments on the challenging Market-1501 dataset show that our method yields competitive performance in all the aforementioned variant scenarios.
127 - Xingran Zhou , Siyu Huang , Bin Li 2019
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appearance transferred image synthesis. In the first stage, our method infers a reasonable target human pose based on the text. In the second stage, our method synthesizes a realistic and appearance transferred person image according to the text in conjunction with the target pose. Our method extracts sufficient information from the text and establishes a mapping between the image space and the language space, making generating and editing images corresponding to the description possible. We conduct extensive experiments to reveal the effectiveness of our method, as well as using the VQA Perceptual Score as a metric for evaluating the method. It shows for the first time that we can automatically edit the person image from the natural language descriptions.
Occluded person re-identification is a challenging task as the appearance varies substantially with various obstacles, especially in the crowd scenario. To address this issue, we propose a Pose-guided Visible Part Matching (PVPM) method that jointly learns the discriminative features with pose-guided attention and self-mines the part visibility in an end-to-end framework. Specifically, the proposed PVPM includes two key components: 1) pose-guided attention (PGA) method for part feature pooling that exploits more discriminative local features; 2) pose-guided visibility predictor (PVP) that estimates whether a part suffers the occlusion or not. As there are no ground truth training annotations for the occluded part, we turn to utilize the characteristic of part correspondence in positive pairs and self-mining the correspondence scores via graph matching. The generated correspondence scores are then utilized as pseudo-labels for visibility predictor (PVP). Experimental results on three reported occluded benchmarks show that the proposed method achieves competitive performance to state-of-the-art methods. The source codes are available at https://github.com/hh23333/PVPM

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا