Do you want to publish a course? Click here

Nuclear spin temperature reversal via continuous radio-frequency driving

67   0   0.0 ( 0 )
 Added by Carlos Meriles Prof
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical spin pumping of color centers in diamond is presently attracting broad interest as a platform for dynamic nuclear polarization at room temperature, but the mechanisms involved in the generation and transport of polarization within the host crystal are still partly understood. Here we investigate the impact of continuous radio-frequency (RF) excitation on the generation of nuclear magnetization produced by optical illumination. In the presence of RF excitation far removed from the nuclear Larmor frequency, we witness a magnetic-field-dependent sign reversal of the measured nuclear spin signal when the drive is sufficiently strong, a counter-intuitive finding that immediately points to non-trivial spin dynamics. With the help of analytical and numerical modeling, we show our observations indicate a modified form of solid effect, down-converted from the microwave to the radio-frequency range through the driving of hybrid transitions involving one (or more) nuclei and two (or more) electron spins. Our results open intriguing opportunities for the manipulation of many-electron spin systems by exploiting hyperfine couplings as a means to access otherwise forbidden intra-band transitions.



rate research

Read More

82 - A. Ajoy , R. Nazaryan , K. Liu 2018
Dynamic Nuclear Polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP, but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, employing a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals, e.g. TEMPO, these multiplicative gains could exceed an order of magnitude.
119 - J. Zopes , K. Herb , K. S. Cujia 2018
Distance measurements via the dipolar interaction are fundamental to the application of nuclear magnetic resonance (NMR) to molecular structure determination, but they only provide information on the absolute distance $r$ and polar angle $theta$ between spins. In this Letter, we present a protocol to also retrieve the azimuth angle $phi$. Our method relies on measuring the nuclear precession phase after application of a control pulse with a calibrated external radio-frequency coil. We experimentally demonstrate three-dimensional positioning of individual carbon-13 nuclear spins in a diamond host crystal relative to the central electronic spin of a single nitrogen-vacancy center. The ability to pinpoint three-dimensional nuclear locations is central for realizing a nanoscale NMR technique that can image the structure of single molecules with atomic resolution.
Recent demonstrations of ultracoherent nanomechanical resonators introduce the prospect of new protocols for solid state sensing applications. Here, we propose to use two coupled ultracoherent resonator modes on a Si$_3$N$_4$ membrane for the detection of small nuclear spin ensembles. To this end, we employ parametric frequency conversion between nondegenerate modes. The nondegenerate modes result from coupled degenerate resonators, and the parametric conversion is mediated by periodic
We present a detailed analysis of the production efficiency of weakly bound heteronuclear KRb-Feshbach molecules using radio frequency association in a harmonic trap. The efficiency was measured in a wide range of temperatures, binding energies and radio frequencies. A comprehensive analytical model is presented, explaining the observed asymmetric spectra and achieving good quantitative agreement with the measured production rates. This model provides a deep understanding of the molecule association process and paves the way for future experiments which rely on Feshbach molecules e.g. for the production of deeply bound molecules.
We perform measurements of the radiation pressure of a radio-frequency (RF) electromagnetic field which may lead to a new SI-traceable power calibration. There are several groups around the world investigating methods to perform more direct SI traceable measurement of RF power (where RF is defined to range from 100s of MHz to THz). A measurement of radiation pressure offers the possibility for a power measure traceable to the kilogram and to Plancks constant through the redefined SI. Towards this goal, we demonstrate the ability to measure the radiation pressure/force carried in a field at 15~GHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا