No Arabic abstract
Dynamic Nuclear Polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP, but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, employing a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals, e.g. TEMPO, these multiplicative gains could exceed an order of magnitude.
Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anti-crossing condition - where the P1 Zeeman splitting matches one of the NV spin transitions - we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.
Frequency combs, broadband light sources whose spectra consist of coherent, discrete modes, have become essential in many fields. Miniaturizing frequency combs would be a significant advance in these fields, enabling the deployment of frequency-comb based devices for diverse measurement and spectroscopy applications. We demonstrate diode-laser based frequency comb generators. These laser diodes are simple, electrically pumped, inexpensive and readily manufactured. Each chip contains several dozen diode-laser combs. We measure the time-domain output of a diode frequency comb to reveal the underlying frequency dynamics responsible for the comb spectrum, conduct dual comb spectroscopy of a molecular gas with two devices on the same chip, and demonstrate that these combs can be battery powered.
Optical spin pumping of color centers in diamond is presently attracting broad interest as a platform for dynamic nuclear polarization at room temperature, but the mechanisms involved in the generation and transport of polarization within the host crystal are still partly understood. Here we investigate the impact of continuous radio-frequency (RF) excitation on the generation of nuclear magnetization produced by optical illumination. In the presence of RF excitation far removed from the nuclear Larmor frequency, we witness a magnetic-field-dependent sign reversal of the measured nuclear spin signal when the drive is sufficiently strong, a counter-intuitive finding that immediately points to non-trivial spin dynamics. With the help of analytical and numerical modeling, we show our observations indicate a modified form of solid effect, down-converted from the microwave to the radio-frequency range through the driving of hybrid transitions involving one (or more) nuclei and two (or more) electron spins. Our results open intriguing opportunities for the manipulation of many-electron spin systems by exploiting hyperfine couplings as a means to access otherwise forbidden intra-band transitions.
We study the analogue of optical frequency combs in driven nonlinear phononic systems, and present a new generation mechanism for phononic frequency combs via nonlinear resonances. The nonlinear resonance refers to the simultaneous excitation of a set of phonon modes by the external driving, and thereby generated frequency combs are characterized by an array of equidistant spectral lines in the spectrum of each nonlinearly excited phonon mode. Frequency combs via nonlinear resonance of different orders are investigated, and particularly we reveal the possibility for correlation tailoring in higher order cases. The investigation contributes to potential applications in various nonlinear acoustic processes, such as harvesting phonons and generating phonon entanglements, and can also be generalized to other nonlinear systems.
Ultracold polar molecules can be shielded from fast collisional losses using microwaves, but achieving the required polarization purity is technically challenging. Here, we propose a scheme for shielding using microwaves with polarization that is far from circular. The setup relies on a modest static electric field, and is robust against imperfections in its orientation.