Do you want to publish a course? Click here

Application of high-spatial-resolution secondary ion mass spectrometry for nanoscale chemical mapping of lithium in an Al-Li alloy

57   0   0.0 ( 0 )
 Added by Xu Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-spatial-resolution secondary ion mass spectrometry offers a method for mapping lithium at nanoscale lateral resolution. Practical implementation of this technique offers significant potential for revealing the distribution of Li in many materials with exceptional lateral resolution and elemental sensitivity. Here, two state-of-the-art methods are demonstrated on an aluminium-lithium alloy to visualise nanoscale Li-rich phases by mapping the 7Li+ secondary ion. NanoSIMS 50L analysis with a radio frequency O- plasma ion source enabled visualisation of needle-shaped T1 (Al2CuLi) phases as small as 75 nm in width. A compact time-of-flight secondary ion mass spectrometry detector added to a focused ion beam scanning electron microscope facilitated mapping of the T1 phases down to 45 nm in width using a Ga+ ion beam. Correlation with high resolution electron microscopy confirms the identification of T1 precipitates, their sizes and distribution observed during SIMS mapping.



rate research

Read More

372 - X. Xu , M. Hao , J. Chen 2021
Intermetallic phases in a recently developed Al-Li-Cu-Mg alloy have been investigated to understand their roles in the initiation and propagation processes of intergranular corrosion. Corrosion initiation involves trenching formation in the Al matrix adjacent to the large particles of Al7Cu2(Fe, Mn) phases. These phases containing Li are electrochemically active and susceptible to self-dissolution via a de-alloying mechanism during corrosion process. The subsurface particles of Al7Cu2(Fe, Mn) and Al20Cu2Mn3 phases act as the internal cathodes for continuous corrosion propagation along the particle-matrix interface and the associated grain boundaries. Corrosion propagation along the particle-matrix interface was facilitated by the anodic dissolution of the surrounding Al matrix due to the micro-galvanic interaction with the cathodic intermetallic phases. In addition, T1 (Al2CuLi) precipitates and the isolated particles of Al7Cu2(Fe, Mn) and Al20Cu2Mn3 phases were dissolved along the path of corrosion propagation. The dissolved metal ions were redeposited through the network of crevice.
A thick electrode with high areal capacity has been developed as a strategy for high-energy-density lithium-ion batteries, but thick electrodes have difficulties in manufacturing and limitations in ion transport. Here, we reported a new manufacturing approach for ultra-thick electrode with aligned structure, called structure electrode additive manufacturing or SEAM, which aligns active materials to the through-thicknesses direction of electrodes using shear flow and a designed printing path. The ultra-thick electrodes with high loading of active materials, low tortuous structure, and good structure stability resulting from a simple and scalable SEAM lead to rapid ion transport and fast electrolyte infusion, delivering a higher areal capacity than slurry-casted thick electrodes. SEAM shows strengths in design flexibility and scalability, which allows the production of practical high energy/power density structure electrodes.
Quasi-simultaneous arrival (QSA) effects in secondary ion mass spectrometry can create mass-indepedent inaccuracies in isotope measurements when using electron multiplier detectors (EMs). The simple Poisson statistical model of QSA does not explain most experimental data. We present pulse-height distributions (PHDs) and time-series measurements to better study QSA. Our data show that PHDs and the distribution of multiple arrivals on the EM are not consistent with the Poisson model. Multiple arrivals are over-dispersed compared to Poisson and are closer to a negative binomial distribution. Through an emission-transmission-detection model we show that the QSA correction depends on the non-Poisson emission of multiple secondary ions, the secondary ion energy distribution, and other factors, making an analytical correction impractical. A standards-based correction for QSA is the best approach, and we show the proper way to calculate standards-normalized $delta$ values to minimize the effect of QSA.
Great achievements have been made in alloying of two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), which can allow tunable band gaps for practical applications in optoelectronic devices. However, telluride-based TMDs alloys were less studied due to the difficulties of sample synthesis. Here, in this work we report the large-area synthesis of 2D MoTexSe2-x alloy films with controllable Te composition by a modified alkali metal halides assisted chemical vapor deposition method. The as-prepared films have millimeter-scale transverse size. Raman spectra experiments combining calculated Raman spectra and vibrational images obtained by density functional theory (DFT) confirmed the 2H-phase of the MoTexSe2-x alloys. The A1g mode of MoSe2 shows a significant downshift accompanied by asymmetric broadening to lower wavenumber with increasing value of x, while E12g mode seems unchanged, which were well explained by a phonon confinement model. Our work provides a simple method to synthesize large-scale 2H phase Te-based 2D TMDs alloys for their further applications.
In view of the long-standing controversy over the reversibility of transition metals in Sn-based alloys as anode for Li-ion batteries, an in situ real-time magnetic monitoring method was used to investigate the evolution of Sn-Co intermetallic during the electrochemical cycling. Sn-Co alloy film anodes with different compositions were prepared via magnetron sputtering without using binders and conductive additives. The magnetic responses showed that the Co particles liberated by Li insertion recombine fully with Sn during the delithiation to reform Sn-Co intermetallic into stannum richer phases Sn7Co3. However, as the Co content increases, it can only recombine partially with Sn into cobalt richer phases Sn3Co7. The unconverted Co particles may form a dense barrier layer and prevent the full reaction of Li with all the Sn in the anode, leading to lower capacities. These critical results shed light on understanding the reaction mechanism of transition metals, and provide valuable insights toward the design of high-performance Sn alloy based anodes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا