Do you want to publish a course? Click here

Spatio-Temporal Multi-step Prediction of Influenza Outbreaks

339   0   0.0 ( 0 )
 Added by Hongyan Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Flu circulates all over the world. The worldwide infection places a substantial burden on peoples health every year. Regardless of the characteristic of the worldwide circulation of flu, most previous studies focused on regional prediction of flu outbreaks. The methodology of considering the spatio-temporal correlation could help forecast flu outbreaks more precisely. Furthermore, forecasting a long-term flu outbreak, and understanding flu infection trends more accurately could help hospitals, clinics, and pharmaceutical companies to better prepare for annual flu outbreaks. Predicting a sequence of values in the future, namely, the multi-step prediction of flu outbreaks should cause concern. Therefore, we highlight the importance of developing spatio-temporal methodologies to perform multi-step prediction of worldwide flu outbreaks. We compared the MAPEs of SVM, RF, LSTM models of predicting flu data of the 1-4 weeks ahead with and without other countries flu data. We found the LSTM models achieved the lowest MAPEs in most cases. As for countries in the Southern hemisphere, the MAPEs of predicting flu data with other countries are higher than those of predicting without other countries. For countries in the Northern hemisphere, the MAPEs of predicting flu data of the 2-4 weeks ahead with other countries are lower than those of predicting without other countries; and the MAPEs of predicting flu data of the 1-weeks ahead with other countries are higher than those of predicting without other countries, except for the UK. In this study, we performed the spatio-temporal multi-step prediction of influenza outbreaks. The methodology considering the spatio-temporal features improves the multi-step prediction of flu outbreaks.



rate research

Read More

An effective understanding of the environment and accurate trajectory prediction of surrounding dynamic obstacles are indispensable for intelligent mobile systems (e.g. autonomous vehicles and social robots) to achieve safe and high-quality planning when they navigate in highly interactive and crowded scenarios. Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent. In this paper, we propose a generic generative neural system (called STG-DAT) for multi-agent trajectory prediction involving heterogeneous agents. The system takes a step forward to explicit interaction modeling by incorporating relational inductive biases with a dynamic graph representation and leverages both trajectory and scene context information. We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction. The constraint not only ensures physical feasibility but also enhances model performance. Moreover, the proposed prediction model can be easily adopted by multi-target tracking frameworks. The tracking accuracy proves to be improved by empirical results. The proposed system is evaluated on three public benchmark datasets for trajectory prediction, where the agents cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that our model achieves better performance than various baseline approaches in terms of prediction and tracking accuracy.
We study the spatio-temporal patterns of the proportion of influenza B out of laboratory confirmations of both influenza A and B, with data from 139 countries and regions downloaded from the FluNet compiled by the World Health Organization, from January 2006 to October 2015, excluding 2009. We restricted our analysis to 34 countries that reported more than 2000 confirmations for each of types A and B over the study period. We find that Pearsons correlation is 0.669 between effective distance from Mexico and influenza B proportion among the countries from January 2006 to October 2015. In the United States, influenza B proportion in the pre-pandemic period (2003-2008) negatively correlated with that in the post-pandemic era (2010-2015) at the regional level. Our study limitations are the country-level variations in both surveillance methods and testing policies. Influenza B proportion displayed wide variations over the study period. Our findings suggest that even after excluding 2009s data, the influenza pandemic still has an evident impact on the relative burden of the two influenza types. Future studies could examine whether there are other additional factors. This study has potential implications in prioritizing public health control measures.
We propose SAINT+, a successor of SAINT which is a Transformer based knowledge tracing model that separately processes exercise information and student response information. Following the architecture of SAINT, SAINT+ has an encoder-decoder structure where the encoder applies self-attention layers to a stream of exercise embeddings, and the decoder alternately applies self-attention layers and encoder-decoder attention layers to streams of response embeddings and encoder output. Moreover, SAINT+ incorporates two temporal feature embeddings into the response embeddings: elapsed time, the time taken for a student to answer, and lag time, the time interval between adjacent learning activities. We empirically evaluate the effectiveness of SAINT+ on EdNet, the largest publicly available benchmark dataset in the education domain. Experimental results show that SAINT+ achieves state-of-the-art performance in knowledge tracing with an improvement of 1.25% in area under receiver operating characteristic curve compared to SAINT, the current state-of-the-art model in EdNet dataset.
96 - Yanan Wang , Tong Xu , Xin Niu 2019
The development of intelligent traffic light control systems is essential for smart transportation management. While some efforts have been made to optimize the use of individual traffic lights in an isolated way, related studies have largely ignored the fact that the use of multi-intersection traffic lights is spatially influenced and there is a temporal dependency of historical traffic status for current traffic light control. To that end, in this paper, we propose a novel SpatioTemporal Multi-Agent Reinforcement Learning (STMARL) framework for effectively capturing the spatio-temporal dependency of multiple related traffic lights and control these traffic lights in a coordinating way. Specifically, we first construct the traffic light adjacency graph based on the spatial structure among traffic lights. Then, historical traffic records will be integrated with current traffic status via Recurrent Neural Network structure. Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method. Finally, the experimental results on both synthetic and real-world data have demonstrated the effectiveness of our STMARL framework, which also provides an insightful understanding of the influence mechanism among multi-intersection traffic lights.
This paper proposes a spatio-temporal model for wind speed prediction which can be run at different resolutions. The model assumes that the wind prediction of a cluster is correlated to its upstream influences in recent history, and the correlation between clusters is represented by a directed dynamic graph. A Bayesian approach is also described in which prior beliefs about the predictive errors at different data resolutions are represented in a form of Gaussian processes. The joint framework enhances the predictive performance by combining results from predictions at different data resolution and provides reasonable uncertainty quantification. The model is evaluated on actual wind data from the Midwest U.S. and shows a superior performance compared to traditional baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا