No Arabic abstract
An effective understanding of the environment and accurate trajectory prediction of surrounding dynamic obstacles are indispensable for intelligent mobile systems (e.g. autonomous vehicles and social robots) to achieve safe and high-quality planning when they navigate in highly interactive and crowded scenarios. Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent. In this paper, we propose a generic generative neural system (called STG-DAT) for multi-agent trajectory prediction involving heterogeneous agents. The system takes a step forward to explicit interaction modeling by incorporating relational inductive biases with a dynamic graph representation and leverages both trajectory and scene context information. We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction. The constraint not only ensures physical feasibility but also enhances model performance. Moreover, the proposed prediction model can be easily adopted by multi-target tracking frameworks. The tracking accuracy proves to be improved by empirical results. The proposed system is evaluated on three public benchmark datasets for trajectory prediction, where the agents cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that our model achieves better performance than various baseline approaches in terms of prediction and tracking accuracy.
3D convolutional neural networks have achieved promising results for video tasks in computer vision, including video saliency prediction that is explored in this paper. However, 3D convolution encodes visual representation merely on fixed local spacetime according to its kernel size, while human attention is always attracted by relational visual features at different time of a video. To overcome this limitation, we propose a novel Spatio-Temporal Self-Attention 3D Network (STSANet) for video saliency prediction, in which multiple Spatio-Temporal Self-Attention (STSA) modules are employed at different levels of 3D convolutional backbone to directly capture long-range relations between spatio-temporal features of different time steps. Besides, we propose an Attentional Multi-Scale Fusion (AMSF) module to integrate multi-level features with the perception of context in semantic and spatio-temporal subspaces. Extensive experiments demonstrate the contributions of key components of our method, and the results on DHF1K, Hollywood-2, UCF, and DIEM benchmark datasets clearly prove the superiority of the proposed model compared with all state-of-the-art models.
An effective understanding of the contextual environment and accurate motion forecasting of surrounding agents is crucial for the development of autonomous vehicles and social mobile robots. This task is challenging since the behavior of an autonomous agent is not only affected by its own intention, but also by the static environment and surrounding dynamically interacting agents. Previous works focused on utilizing the spatial and temporal information in time domain while not sufficiently taking advantage of the cues in frequency domain. To this end, we propose a Spectral Temporal Graph Neural Network (SpecTGNN), which can capture inter-agent correlations and temporal dependency simultaneously in frequency domain in addition to time domain. SpecTGNN operates on both an agent graph with dynamic state information and an environment graph with the features extracted from context images in two streams. The model integrates graph Fourier transform, spectral graph convolution and temporal gated convolution to encode history information and forecast future trajectories. Moreover, we incorporate a multi-head spatio-temporal attention mechanism to mitigate the effect of error propagation in a long time horizon. We demonstrate the performance of SpecTGNN on two public trajectory prediction benchmark datasets, which achieves state-of-the-art performance in terms of prediction accuracy.
The availability of massive earth observing satellite data provide huge opportunities for land use and land cover mapping. However, such mapping effort is challenging due to the existence of various land cover classes, noisy data, and the lack of proper labels. Also, each land cover class typically has its own unique temporal pattern and can be identified only during certain periods. In this article, we introduce a novel architecture that incorporates the UNet structure with Bidirectional LSTM and Attention mechanism to jointly exploit the spatial and temporal nature of satellite data and to better identify the unique temporal patterns of each land cover. We evaluate this method for mapping crops in multiple regions over the world. We compare our method with other state-of-the-art methods both quantitatively and qualitatively on two real-world datasets which involve multiple land cover classes. We also visualise the attention weights to study its effectiveness in mitigating noise and identifying discriminative time period.
Flu circulates all over the world. The worldwide infection places a substantial burden on peoples health every year. Regardless of the characteristic of the worldwide circulation of flu, most previous studies focused on regional prediction of flu outbreaks. The methodology of considering the spatio-temporal correlation could help forecast flu outbreaks more precisely. Furthermore, forecasting a long-term flu outbreak, and understanding flu infection trends more accurately could help hospitals, clinics, and pharmaceutical companies to better prepare for annual flu outbreaks. Predicting a sequence of values in the future, namely, the multi-step prediction of flu outbreaks should cause concern. Therefore, we highlight the importance of developing spatio-temporal methodologies to perform multi-step prediction of worldwide flu outbreaks. We compared the MAPEs of SVM, RF, LSTM models of predicting flu data of the 1-4 weeks ahead with and without other countries flu data. We found the LSTM models achieved the lowest MAPEs in most cases. As for countries in the Southern hemisphere, the MAPEs of predicting flu data with other countries are higher than those of predicting without other countries. For countries in the Northern hemisphere, the MAPEs of predicting flu data of the 2-4 weeks ahead with other countries are lower than those of predicting without other countries; and the MAPEs of predicting flu data of the 1-weeks ahead with other countries are higher than those of predicting without other countries, except for the UK. In this study, we performed the spatio-temporal multi-step prediction of influenza outbreaks. The methodology considering the spatio-temporal features improves the multi-step prediction of flu outbreaks.
We propose a multiscale spatio-temporal graph neural network (MST-GNN) to predict the future 3D skeleton-based human poses in an action-category-agnostic manner. The core of MST-GNN is a multiscale spatio-temporal graph that explicitly models the relations in motions at various spatial and temporal scales. Different from many previous hierarchical structures, our multiscale spatio-temporal graph is built in a data-adaptive fashion, which captures nonphysical, yet motion-based relations. The key module of MST-GNN is a multiscale spatio-temporal graph computational unit (MST-GCU) based on the trainable graph structure. MST-GCU embeds underlying features at individual scales and then fuses features across scales to obtain a comprehensive representation. The overall architecture of MST-GNN follows an encoder-decoder framework, where the encoder consists of a sequence of MST-GCUs to learn the spatial and temporal features of motions, and the decoder uses a graph-based attention gate recurrent unit (GA-GRU) to generate future poses. Extensive experiments are conducted to show that the proposed MST-GNN outperforms state-of-the-art methods in both short and long-term motion prediction on the datasets of Human 3.6M, CMU Mocap and 3DPW, where MST-GNN outperforms previous works by 5.33% and 3.67% of mean angle errors in average for short-term and long-term prediction on Human 3.6M, and by 11.84% and 4.71% of mean angle errors for short-term and long-term prediction on CMU Mocap, and by 1.13% of mean angle errors on 3DPW in average, respectively. We further investigate the learned multiscale graphs for interpretability.