Do you want to publish a course? Click here

User-Inspired Posterior Network for Recommendation Reason Generation

134   0   0.0 ( 0 )
 Added by Haolan Zhan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recommendation reason generation, aiming at showing the selling points of products for customers, plays a vital role in attracting customers attention as well as improving user experience. A simple and effective way is to extract keywords directly from the knowledge-base of products, i.e., attributes or title, as the recommendation reason. However, generating recommendation reason from product knowledge doesnt naturally respond to users interests. Fortunately, on some E-commerce websites, there exists more and more user-generated content (user-content for short), i.e., product question-answering (QA) discussions, which reflect user-cared aspects. Therefore, in this paper, we consider generating the recommendation reason by taking into account not only the product attributes but also the customer-generated product QA discussions. In reality, adequate user-content is only possible for the most popular commodities, whereas large sums of long-tail products or new products cannot gather a sufficient number of user-content. To tackle this problem, we propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users interests with a posterior multiple QA discussions module, and generating recommendation reasons containing the product attributes as well as the user-cared aspects. Experimental results show that our model is superior to traditional generative models. Additionally, the analysis also shows that our model can focus more on the user-cared aspects than baselines.



rate research

Read More

77 - Zhi Bian , Shaojun Zhou , Hao Fu 2021
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.
Next Point-of-Interest (POI) recommendation is a longstanding problem across the domains of Location-Based Social Networks (LBSN) and transportation. Recent Recurrent Neural Network (RNN) based approaches learn POI-POI relationships in a local view based on independent user visit sequences. This limits the models ability to directly connect and learn across users in a global view to recommend semantically trained POIs. In this work, we propose a Spatial-Temporal-Preference User Dimensional Graph Attention Network (STP-UDGAT), a novel explore-exploit model that concurrently exploits personalized user preferences and explores new POIs in global spatial-temporal-preference (STP) neighbourhoods, while allowing users to selectively learn from other users. In addition, we propose random walks as a masked self-attention option to leverage the STP graphs structures and find new higher-order POI neighbours during exploration. Experimental results on six real-world datasets show that our model significantly outperforms baseline and state-of-the-art methods.
As a highly data-driven application, recommender systems could be affected by data bias, resulting in unfair results for different data groups, which could be a reason that affects the system performance. Therefore, it is important to identify and solve the unfairness issues in recommendation scenarios. In this paper, we address the unfairness problem in recommender systems from the user perspective. We group users into advantaged and disadvantaged groups according to their level of activity, and conduct experiments to show that current recommender systems will behave unfairly between two groups of users. Specifically, the advantaged users (active) who only account for a small proportion in data enjoy much higher recommendation quality than those disadvantaged users (inactive). Such bias can also affect the overall performance since the disadvantaged users are the majority. To solve this problem, we provide a re-ranking approach to mitigate this unfairness problem by adding constraints over evaluation metrics. The experiments we conducted on several real-world datasets with various recommendation algorithms show that our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
173 - Yun He , Yin Zhang , Weiwen Liu 2019
User-generated item lists are popular on many platforms. Examples include video-based playlists on YouTube, image-based lists (orboards) on Pinterest, book-based lists on Goodreads, and answer-based lists on question-answer forums like Zhihu. As users create these lists, a common challenge is in identifying what items to curate next. Some lists are organized around particular genres or topics, while others are seemingly incoherent, reflecting individual preferences for what items belong together. Furthermore, this heterogeneity in item consistency may vary from platform to platform, and from sub-community to sub-community. Hence, this paper proposes a generalizable approach for user-generated item list continuation. Complementary to methods that exploit specific content patterns (e.g., as in song-based playlists that rely on audio features), the proposed approach models the consistency of item lists based on human curation patterns, and so can be deployed across a wide range of varying item types (e.g., videos, images, books). A key contribution is in intelligently combining two preference models via a novel consistency-aware gating network - a general user preference model that captures a users overall interests, and a current preference priority model that captures a users current (as of the most recent item) interests. In this way, the proposed consistency-aware recommender can dynamically adapt as user preferences evolve. Evaluation over four datasets(of songs, books, and answers) confirms these observations and demonstrates the effectiveness of the proposed model versus state-of-the-art alternatives. Further, all code and data are available at https://github.com/heyunh2015/ListContinuation_WSDM2020.
Recently deep learning based recommendation systems have been actively explored to solve the cold-start problem using a hybrid approach. However, the majority of previous studies proposed a hybrid model where collaborative filtering and content-based filtering modules are independently trained. The end-to-end approach that takes different modality data as input and jointly trains the model can provide better optimization but it has not been fully explored yet. In this work, we propose deep content-user embedding model, a simple and intuitive architecture that combines the user-item interaction and music audio content. We evaluate the model on music recommendation and music auto-tagging tasks. The results show that the proposed model significantly outperforms the previous work. We also discuss various directions to improve the proposed model further.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا