No Arabic abstract
Recently deep learning based recommendation systems have been actively explored to solve the cold-start problem using a hybrid approach. However, the majority of previous studies proposed a hybrid model where collaborative filtering and content-based filtering modules are independently trained. The end-to-end approach that takes different modality data as input and jointly trains the model can provide better optimization but it has not been fully explored yet. In this work, we propose deep content-user embedding model, a simple and intuitive architecture that combines the user-item interaction and music audio content. We evaluate the model on music recommendation and music auto-tagging tasks. The results show that the proposed model significantly outperforms the previous work. We also discuss various directions to improve the proposed model further.
With the advent of deep learning, neural network-based recommendation models have emerged as an important tool for tackling personalization and recommendation tasks. These networks differ significantly from other deep learning networks due to their need to handle categorical features and are not well studied or understood. In this paper, we develop a state-of-the-art deep learning recommendation model (DLRM) and provide its implementation in both PyTorch and Caffe2 frameworks. In addition, we design a specialized parallelization scheme utilizing model parallelism on the embedding tables to mitigate memory constraints while exploiting data parallelism to scale-out compute from the fully-connected layers. We compare DLRM against existing recommendation models and characterize its performance on the Big Basin AI platform, demonstrating its usefulness as a benchmark for future algorithmic experimentation and system co-design.
Deep neural networks (DNN) have been successfully applied to music classification including music tagging. However, there are several open questions regarding the training, evaluation, and analysis of DNNs. In this article, we investigate specific aspects of neural networks, the effects of noisy labels, to deepen our understanding of their properties. We analyse and (re-)validate a large music tagging dataset to investigate the reliability of training and evaluation. Using a trained network, we compute label vector similarities which is compared to groundtruth similarity. The results highlight several important aspects of music tagging and neural networks. We show that networks can be effective despite relatively large error rates in groundtruth datasets, while conjecturing that label noise can be the cause of varying tag-wise performance differences. Lastly, the analysis of our trained network provides valuable insight into the relationships between music tags. These results highlight the benefit of using data-driven methods to address automatic music tagging.
Multimedia content is of predominance in the modern Web era. Investigating how users interact with multimodal items is a continuing concern within the rapid development of recommender systems. The majority of previous work focuses on modeling user-item interactions with multimodal features included as side information. However, this scheme is not well-designed for multimedia recommendation. Specifically, only collaborative item-item relationships are implicitly modeled through high-order item-user-item relations. Considering that items are associated with rich contents in multiple modalities, we argue that the latent semantic item-item structures underlying these multimodal contents could be beneficial for learning better item representations and further boosting recommendation. To this end, we propose a LATent sTructure mining method for multImodal reCommEndation, which we term LATTICE for brevity. To be specific, in the proposed LATTICE model, we devise a novel modality-aware structure learning layer, which learns item-item structures for each modality and aggregates multiple modalities to obtain latent item graphs. Based on the learned latent graphs, we perform graph convolutions to explicitly inject high-order item affinities into item representations. These enriched item representations can then be plugged into existing collaborative filtering methods to make more accurate recommendations. Extensive experiments on three real-world datasets demonstrate the superiority of our method over state-of-the-art multimedia recommendation methods and validate the efficacy of mining latent item-item relationships from multimodal features.
Personalized recommendation on new track releases has always been a challenging problem in the music industry. To combat this problem, we first explore user listening history and demographics to construct a user embedding representing the users music preference. With the user embedding and audio data from users liked and disliked tracks, an audio embedding can be obtained for each track using metric learning with Siamese networks. For a new track, we can decide the best group of users to recommend by computing the similarity between the tracks audio embedding and different user embeddings, respectively. The proposed system yields state-of-the-art performance on content-based music recommendation tested with millions of users and tracks. Also, we extract audio embeddings as features for music genre classification tasks. The results show the generalization ability of our audio embeddings.
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could attract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.