Do you want to publish a course? Click here

Improving Visual Reasoning by Exploiting The Knowledge in Texts

339   0   0.0 ( 0 )
 Added by Sahand Sharifzadeh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents a new framework for training image-based classifiers from a combination of texts and images with very few labels. We consider a classification framework with three modules: a backbone, a relational reasoning component, and a classification component. While the backbone can be trained from unlabeled images by self-supervised learning, we can fine-tune the relational reasoning and the classification components from external sources of knowledge instead of annotated images. By proposing a transformer-based model that creates structured knowledge from textual input, we enable the utilization of the knowledge in texts. We show that, compared to the supervised baselines with 1% of the annotated images, we can achieve ~8x more accurate results in scene graph classification, ~3x in object classification, and ~1.5x in predicate classification.



rate research

Read More

Having access to multi-modal cues (e.g. vision and audio) empowers some cognitive tasks to be done faster compared to learning from a single modality. In this work, we propose to transfer knowledge across heterogeneous modalities, even though these data modalities may not be semantically correlated. Rather than directly aligning the representations of different modalities, we compose audio, image, and video representations across modalities to uncover richer multi-modal knowledge. Our main idea is to learn a compositional embedding that closes the cross-modal semantic gap and captures the task-relevant semantics, which facilitates pulling together representations across modalities by compositional contrastive learning. We establish a new, comprehensive multi-modal distillation benchmark on three video datasets: UCF101, ActivityNet, and VGGSound. Moreover, we demonstrate that our model significantly outperforms a variety of existing knowledge distillation methods in transferring audio-visual knowledge to improve video representation learning. Code is released here: https://github.com/yanbeic/CCL.
Deep learning based data-driven approaches have been successfully applied in various image understanding applications ranging from object recognition, semantic segmentation to visual question answering. However, the lack of knowledge integration as well as higher-level reasoning capabilities with the methods still pose a hindrance. In this work, we present a brief survey of a few representative reasoning mechanisms, knowledge integration methods and their corresponding image understanding applications developed by various groups of researchers, approaching the problem from a variety of angles. Furthermore, we discuss upon key efforts on integrating external knowledge with neural networks. Taking cues from these efforts, we conclude by discussing potential pathways to improve reasoning capabilities.
When answering questions about an image, it not only needs knowing what -- understanding the fine-grained contents (e.g., objects, relationships) in the image, but also telling why -- reasoning over grounding visual cues to derive the answer for a question. Over the last few years, we have seen significant progress on visual question answering. Though impressive as the accuracy grows, it still lags behind to get knowing whether these models are undertaking grounding visual reasoning or just leveraging spurious correlations in the training data. Recently, a number of works have attempted to answer this question from perspectives such as grounding and robustness. However, most of them are either focusing on the language side or coarsely studying the pixel-level attention maps. In this paper, by leveraging the step-wise object grounding annotations provided in the GQA dataset, we first present a systematical object-centric diagnosis of visual reasoning on grounding and robustness, particularly on the vision side. According to the extensive comparisons across different models, we find that even models with high accuracy are not good at grounding objects precisely, nor robust to visual content perturbations. In contrast, symbolic and modular models have a relatively better grounding and robustness, though at the cost of accuracy. To reconcile these different aspects, we further develop a diagnostic model, namely Graph Reasoning Machine. Our model replaces purely symbolic visual representation with probabilistic scene graph and then applies teacher-forcing training for the visual reasoning module. The designed model improves the performance on all three metrics over the vanilla neural-symbolic model while inheriting the transparency. Further ablation studies suggest that this improvement is mainly due to more accurate image understanding and proper intermediate reasoning supervisions.
Humans learn to solve tasks of increasing complexity by building on top of previously acquired knowledge. Typically, there exists a natural progression in the tasks that we learn - most do not require completely independent solutions, but can be broken down into simpler subtasks. We propose to represent a solver for each task as a neural module that calls existing modules (solvers for simpler tasks) in a functional program-like manner. Lower modules are a black box to the calling module, and communicate only via a query and an output. Thus, a module for a new task learns to query existing modules and composes their outputs in order to produce its own output. Our model effectively combines previous skill-sets, does not suffer from forgetting, and is fully differentiable. We test our model in learning a set of visual reasoning tasks, and demonstrate improved performances in all tasks by learning progressively. By evaluating the reasoning process using human judges, we show that our model is more interpretable than an attention-based baseline.
Though beneficial for encouraging the Visual Question Answering (VQA) models to discover the underlying knowledge by exploiting the input-output correlation beyond image and text contexts, the existing knowledge VQA datasets are mostly annotated in a crowdsource way, e.g., collecting questions and external reasons from different users via the internet. In addition to the challenge of knowledge reasoning, how to deal with the annotator bias also remains unsolved, which often leads to superficial over-fitted correlations between questions and answers. To address this issue, we propose a novel dataset named Knowledge-Routed Visual Question Reasoning for VQA model evaluation. Considering that a desirable VQA model should correctly perceive the image context, understand the question, and incorporate its learned knowledge, our proposed dataset aims to cutoff the shortcut learning exploited by the current deep embedding models and push the research boundary of the knowledge-based visual question reasoning. Specifically, we generate the question-answer pair based on both the Visual Genome scene graph and an external knowledge base with controlled programs to disentangle the knowledge from other biases. The programs can select one or two triplets from the scene graph or knowledge base to push multi-step reasoning, avoid answer ambiguity, and balanced the answer distribution. In contrast to the existing VQA datasets, we further imply the following two major constraints on the programs to incorporate knowledge reasoning: i) multiple knowledge triplets can be related to the question, but only one knowledge relates to the image object. This can enforce the VQA model to correctly perceive the image instead of guessing the knowledge based on the given question solely; ii) all questions are based on different knowledge, but the candidate answers are the same for both the training and test sets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا